The effect of gas hydrates self-preservation in the process of their industrial development
DOI:
https://doi.org/10.26906/znp.2021.57.2596Keywords:
gas hydrates, development of gas hydrate, deposits, self-preservation, ice crust, parameters of self-preservation manifestation during miningAbstract
The negative influence of the gas hydrates (GH) self-preservation effect on the course of the technological process of their industrial development by the depressurization method is considered. The main parameters of the self-preservation manifestation: the porosity of the hydrate and its morphological characteristics are justified. An important practical conclusion was made that solving the problems of gas hydrates self-preservation should be facilitated by the selection of the optimal operation mode for the production well, which would harmonize the hydrate porosity and its morphological characteristics, and at the same time ensure the maximum possible production and control over the processes of gas hydrates dissociation.
References
Makogon Y.F., Holditch S.A. & Makogon T.Y. (2007). Natural gas hydrates-A potential energy source for the 21st Century. J. of Petroleum Science & Engineering, 56(1-3): pp. 14–31. https://doi.org/10.1016/j.petrol.2005.10.009.
Chen Y., Gao Y., Chen L., Wang X., Liu K. & Sun B. (2019). Experimental investigation of the behavior of methane gas hydrates during depressurization-assisted CO2 replacement. J. of Natural Gas Science and Engineering. 61: pp. 284–292. https://doi.org/10.1016/j.jngse.2018.11.015.
Makogon Y.F. (2010). Natural gas hydrates–A promising source of energy. J. of Natural Gas Science and Engineering. 2 (1): pp. 49–59. https://doi.org/10.1016/j.jngse.2009.12.004.
Pivnyak G., Kryzhanivskyi E.I., Onyshchenko V.O., Bondarenko V.I., Vityaz O.Yu., Zotsenko M.L., Maksimova E.O., Sai K.S., Ovchinnikov M.L. ., Ganushevich K.A., Ovetskyi S.O., Femyak Y.M., Trubenko O.M., Mazur M.P., Poberezhny L.Ya., Pedchenko M.M., Rubel V.P ., Koshlak G.V., Pedchenko L.O. (2015). Gas hydrates. Hydrate formation and basics of gas hydrate development: monograph. Dnipropetrovsk: LizunovPress LLC.
Collett T.S. (2002). Energy resource potential of natural gas hydrates. AAPG bulletin 86 (11): 1971–1992. https://doi.org/10.1306/61EEDDD2-173E-11D7-8645000102C1865D.
Moridis G.J, Collett T.S. & Pooladi-Darvish M. (2013). Challenges Uncertainties and Issues Facing Gas Production From Gas-Hydrate Deposits. SPE Reservoir Evaluation & Engineering 14(01). Follow j.: pp. 745–771. doi: 10.2118/131792-PA.
Zhang, W, Bai, F.L., Shao, M.J. & Tian, Q.N. (2017). Progress of offshore natural gas hydrate production tests in Japan and implications. Marine Geology & Quaternary Geology, 37(5): pp. 27–33.
Collett T.S., Johnson A.H., Knapp C.C. & Boswell R. (2009). Natural gas Hydrates-Energy resource potential and associated geologic hazard. AAPG Memoir 89, 29(2): pp. 858–869.
Anderson B., Boswell R., Collett T.S., Farrell H., Ohtsuki S., White M. & Zyrianova M. (2014). Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial. Proc. of the 8th Intern. Conf. on Gas Hydrates (ICGH8-2014), Beijing, China.
JWN Energy (2017). China Successfully Completes First Gas Hydrate Trial. Retrieved from http://www.jwnenergy.com/article/2017/8/china-successfully-completes-first-gas-hydrate-trial.
Takeya S., Ebinuma Т., Uchida Т. et al. (2002). Self-preservation effect and dissociation rates of CH4 hydrate. J. Crystal Growth, V. 237‒239: pp. 379–382.
Stem L.A., Circone S., Kirby S.H. & Durham W.B. (2003). Temperature, pressure and composition effects on anomalous or «self» preservation of gas hydrates. Can. J. Phys. Vol. 81: pp. 271–283.
Handa Y.P. (1986). Calorimetric determinations of the compositions, enthalpies of dissociation, and heat capacities in the range 85 to 270 К for clathrates of xenon and krypton. J. Chem. Thermodynamics. Vol. 18: pp. 891–902. doi:10.1016/0021-9614(86)90124-2. Corpus ID: 97085868.
Davidson D.W., Garg S.K., Gough S.R., Handa Y.P., Ratcliffe C.I., Ripmeester J.A., Tse J.S. & Lawson W.F. (1986). Laboratory analysis of a naturally occurring gas hydrate from sediment of the Gulf of Mexico. Geochimica et Cosmochimica Acta. Vol. 50. Is. 4: pp. 619–623.
Takeya S., Uchida T., Nagao J., Ohmura R., Shimada W., Kamata Y., Ebinuma T. & Narita H. (2005). Particle size effect of CH4 hydrate for self-preservation. Chem. Eng. Sci. Vol. 60: pp. 1383–1387. https://doi.org/10.1016/j.ces.2004.10.011.
Takeya S., Ebinuma T., Uchida T. et al (2002). Self-preservation effect and dissociation rates of CH4 hydrate Crystal Growth. Vol. 237–239: pp. 379–382.
Kutnyi B., Pavlenko A. & Koshlak H. (2020). Thermophysical-based effect of gas hydrates self-preservation. Rocznik Ochrona Srodowiska. Vol. 22, №1: pp. 11‒23.
Carrol J.J. (2009). Natural Gas Hydrates. 2-nd ed. Burlington (USA): Elsevier Inc,
Gudmundsson J., Parlaktuna M. & Kohar A. (1994). Storing natural gas as frozen hydrate. SPE Production and Facilities. 9(1): pp. 69−73. https://doi.org/10.2118/24924-pa.
van der Waals J.H. & Platteeuw J.C. (1959). Clathrate solutions. Adv Chem Phys. №2: pp. 1–57. doi:10.1002/9780470143483.ch1.
Barrer R. & Edge A. (1967). Gas hydrate containing argon, krypton and xenon. Proc. Roy. Soc Lon. Ser-A 300: pp. 1–24.
Bugai Y.N., Balakirov Yu.A. (2001). Gas-hydrated deposits (conditions for the formation of deposits, approaches to the search and extraction of methane gas). Kyiv: MNTU.
Handa Y.P. (1986). Calorimetric determinations of the composition, enthalpies of dissociation and heat capacities in the range 85 to 270 К for clathrate hydrates of xenon and krypton. J. Chem. Thermodynamics. Vol. 18: pp. 891–902.
Yakushev V. & Istomin V. (1991). Gas-hydrates self-preservation effect. Proc. IPC-91 Symp. Sapporo: pp. 136–140.
Ershov E. & Yakushev V. (1992). Experimental research on gas hydrate decomposition in frozen rocks. Cold Regions Science and Technology. №20: pp. 147−156.
Khokhar A.A. (1998). Storage Properties of Natural Gas Hydrates. Dr. Ing. Thesis. Department of Petroleum Engineering and Applied Geophysics NTNU. Trondheim.
Yin Z., Chong Z.R., Tan H.K. & Linga P. (2016) Review of gas hydrate dissociation kinetic models for energy recovery. J. of natural Science and Engineering. №35: pp. 1362–1387. doi:10.1016/j.jngse.2016.04.050.
Chen X. & Espinoza D. (2018). Surface area controls gas hydrate dissociation kinetics in porous media. Fuel. Vol. 234: pp. 358–363. doi:10.1016/j.fuel.2018.07.030. https://www.sciencedirect.com/science/article/pii/S0016236118312298.
Jarrar Z.A., Alshibli K.A., Al-Raoush R.I. & Jung J. (2019). Gas Driven Fracture During Gas Production Using 3D Synchrotron Computed Tomography. Energy Geotechnics. SEG 2018. Springer Series in Geomechanics and Geoengineering. Springer, Cham. pp. 344–351. https://doi.org/10.1007/978-3-319-99670-7_43.
Li G., Moridis G.J., Zhang K. & Li X.-S. (2010). Evaluation of gas production potential from marine gas hydrate deposits in Shenhu Area of South China Sea. Energy Fuels. №24: pp. 6018–6033. Doi: 10.1021/EF100930M. Corpus ID: 98403243.
Li G., Li X.-S., Lv Q.-N. & Zhang Y. (2019). Permeability measurements of quartz sands with methane hydrate. Chemical Engineering Science №193: pp. 1–5.
Choudhary N., Chakrabarty S., Roy S. & Kumar R. (2019). A comparison of different water models for melting point calculation of methane hydrate using molecular dynamics simulations. Chemical Physics. Vol. 516: pp. 6–14.
Chen B., Yang M., Sun H., Wang P. & Wang D. (2019). Visualization study on the promotion of natural gas hydrate production by water flow erosion. Fuel. Vol. 235: pp. 63–71. Manuscript_0b20671d7662887d5a8bd4745bdbdb88. https://www.sciencedirect.com/science/article/pii/S0016236119306842.
Merey Ş. (2019). Evaluation of drilling parameters in gas hydrate exploration wells. J. of Petroleum Science and Engineering. №172: pp. 855–877. https://doi.org/10.1016/j.petrol.2018.08.079.