Fundamentals of designing rational slab steel-reinforced concrete structures and elements of floors

Authors

DOI:

https://doi.org/10.26906/znp.2022.58.3080

Keywords:

steel-reinforced concrete, slab structures, flexural strength, floors, design

Abstract

The article provides a general methodology for calculating and designing rational (optimal) slab structures and elements of steel-reinforced concrete (SRC) floors, taking into account the ultimate stress-strain state of their elements at the moment of their destruction. The method of rational (optimal) design of slab SRC elements of floors depending on the ultimate stress-strain state at the time of failure of their component parts includes the solution of two problems: the selection of the cross section of the slab SRC element and its reinforcement, which is a direct task of optimization design; checking the bending strength in the calculated cross-sections of the slab SRC element

References

DBN V.2.6-160:2010 (2011). Structures of buildings and structures. Steel-reinforced concrete structures. Basic Provisions. Kyiv, Minregion Ukraine (in Ukrainian)

DSTU B V.2.6-206:2015 (2015). Calculation and design of bending and compression elements of steel-reinforced concrete structures of buildings and structures. Kyiv, Minregion Ukraine (in Ukrainian)

DSTU B V.2.6-215:2016 (2016). Calculation and construction of steel-reinforced concrete structures with slabs on profiled floors. Kyiv, Minregion Ukraine (in Ukrainian)

Mei L., Wang Q. (2021). Structural Optimization in Civil Engineering: A Literature Review. Buildings 2021, 11, 66

doi.org/10.3390/buildings11020066

Luevanos-Rojas A., Lopez-Chavarria S., Medina-Elizo-ndo M., Kalashnikov V. (2020). Optimal design of rein-forced concrete beams for rectangular sections with straight haunches. Revista de la Construcción, 19-1, 90-102

doi.org/10.7764/rdlc.19.1.90-102

Tliouine B., Fedghouche F. (2010). Optimal Design of Reinforced Concrete T-Beams under Ultimate Loads. 2nd International Conference on Engineering Optimization. (September 6 - 9, 2010), Lisbon, Portugal

Habibi A., Ghawami F. & Shahidsade M.S. (2016).

Development of optimum design curves for reinforced concrete beams based on the INBR9. Computers and Concrete, 18(5), 983-998

doi.org/10.12989/CAC.2016.18.5.983

Rahmanian I., Lucet Y. & Tesfamariam S. (2014).

Optimal design of reinforced concrete beams: A review. Computers and Concrete, 13(4), 457-482

doi.org/10.12989/CAC.2014.13.4.457

Singh J. and Chutani S.A. (2015) Survey of Modern Optimization Techniques for Reinforced Concrete Structural Design. International Journal of Engineering Science Invention Research & Development, II(I), 55-62

Guerra A. and Kiousis P.D. (2006) Design optimization of reinforced concrete structures. Computers and Concrete, 3-5, 313-334

doi.org/10.12989/CAC.2006.3.5.313

Pam H.J., Kwan A.K.H. and Islam M.S. (2001).

Flexural strength and ductility of reinforced normal- and high-strength concrete beams. Structures & Buildings, 146-4, 381-389

doi.org/10.1680/stbu.2001.146.4.381

Kwan A. K. H.; Ho J. C. M. and Pam H. J. (2002).

Flexural strength and ductility of reinforced concrete beams // Structures & Buildings. – 2002, Vol. 152, № 4. – pp. 361–369. Doi: 10.1680/stbu.2002.152.4.361

Kwan A.K.H., Au F.T.K. and Chau S.L. (2004).

Theoretical study on effect of confinement on flexural ductility of normal and high-strength concrete beams. Magazine of Concrete Research, 56-5, 299-309

doi.org/10.1680/macr.2004.56.5.299

Ho J. C. M.; Kwan A. K. H. and Pam H. J. (2004).

Minimum flexural ductility design of high strength concrete beams // Magazine of Concrete Research. - 2004, Vol. 56, № 1 .– pp. 13–22. Doi:10.1680/macr.2004.56.1.13.

Seguirant S.J., Brice R. and Khaleghi B. (2010).

Making sense of minimum flexural reinforcement requirements for reinforced concrete memders. PCI Journal, Summer, 64-85

Subramanian N. (2010). Limiting reinforcement ratios for RC flexural members. The Indian Concrete Journal, September, 71-80

Orozco C.E. (2015). Strain limits vs. reinforcement ratio limits – A collection ofnew and old formulas for the design of reinforced concretesections. Case Studies in Structural Engineering, 4, 1-13

doi.org/10.1016/j.csse.2015.05.001

Fayyad T.M and Lees J.M. (2015). Evaluation of a minimum flexural reinforcement ratio using fracture based modelling. IABSE Conference – Structural Engineering: Providing Solutions to Global Challenges, 2-9

Mafleh W. and Kovacs N. (2022). Numerical analysis of composite slim-floor beams. Pollack Periodica, 17-2,

-85

doi.org/10.1556/606.2022.00396

Mohamed S., Shahrizan B., Ahmed W., Azrul A. and Emad H. (2022). Innovation of Shear Connectors in Slim Floor Beam Construction. Journal of Engineering, 2022

doi.org/10.1155/2022/2971811

Duma D., Zaharia R., Pintea D., Both I., Hanus F. (2022). Analytical Method for the Bending Resistance of Slim Floor Beams with Asymmetric Double-T Steel Section under ISO Fire. Appl. Sci., 12, 574

doi.org/10.3390/ app12020574

Borghi T.M., Oliveira L.A.M. and El Debs A.L.H.C. (2021). Numerical investigation on slim floors: comparative analysis of ASB and CoSFB typologies. Rev. IBRACON Estrut. Mater., 14-4, e14411

doi.org/10.1590/S1983-41952021000400011

Dai X., Lam D., Sheehan T., Yang J. and Zhou K. (2020). Effect of dowel shear connector on performance of slim-floor composite shear beams. Journal of Constructional Steel Research, 173

doi.org/10.1016/j.jcsr.2020.106243

Furche, J.; Bauermeister, U. Ermüdungsnachweis für Elementdecken mit Gitterträgern. Beton- und Stahlbetonbaum, 2020, 115 (1), 26–35.

doi.org/10.1002/best.201900056

DSTU-N B EN 1994-1-1:2010 (2010). Eurocode 4. Design of Composite Steel and Concrete Strucures-

Part 1-1: General Rules and Rules for Buildings

(EN 1994-1-1:2004, IDT)., Kyiv, Ukraine

Comité Européen de Normalisation (CEN), (2004b) “Eurocode 4: Design of Composite Steel and Concrete Strucures-Part 1-1: General Rules and Rules for Buildings”, European Standard BS EN 1994-1-1: 1994. European Committee for Standardization (CEN), Brussels, Belgium

American Institute of Steel Construction. (2010).

Specifications for structural steel buildings, AISC 360-10, Chicago, IL

Architectural Institute of Korea (2014). Korea Building Code (KBC 2014) and Commentary, Kimoondang, Korea

JGJ 138-2016 (2016). Code for Design of Composite Structures, China building industry press, Beijing, China

Japan Society of Civil Engineers. (2009). Standard specifications for steel and composite, Tokyo, Japan

Kochkarev D., Galinska T. (2017). Calculation methodology of reinforced concrete elements based on calculated resistance of reinforced concrete. MATEC Web of Conferences 116, 02020

doi.org/10.1051/matecconf/201711602020

Kushnir Y.O., Pents V.F., Ovsii M.O. (2012). Methodical bases for calculating the load-bearing capacity of a normal rectangular reduced cross-section of steel-concrete beams based on the calculated deformation model.

Resource-saving materials, structures, buildings and structures, 24,167-179.

Galinska T., Ovsii D., Ovsii M. (2018). The combining technique of calculating the sections of reinforced concrete bending elements normal to its longitudinal axis, based on the deformation model. International Journal of Engineering & Technology (UAE), 7(3.2), 123-127

doi.org/10.14419/ijet.v7i3.2.14387

Downloads

Published

2022-12-14

How to Cite

Galinska, T., Ovsii, D., Ovsii, O., & Ovsii, M. (2022). Fundamentals of designing rational slab steel-reinforced concrete structures and elements of floors. Збірник наукових праць Галузеве машинобудування будівництво Academic Journal Industrial Machine Building Civil Engineering, 1(58), 55–65. https://doi.org/10.26906/znp.2022.58.3080