Flexural strength of span steel-reinforced concrete truss composite structures

Authors

DOI:

https://doi.org/10.26906/znp.2020.55.2338

Keywords:

steel-reinforced, concrete, span, composite, truss structures, flexural strength

Abstract

The scientific article proposes a method for calculating the bending strength of steel-reinforced concrete (SRC) composite span truss structures. This method allows calculating the flexural strength of the calculated sections of steel-reinforced concrete truss structures, taking into account their stress-strain state at the time of maximum load-bearing capacity or failure. The analysis of experimental and theoretical values of flexural SRC truss beam strength showed their adequate convergence, which allows the application of the calculation method in practice design SRC  span truss structures and members.

References

Schumacher A., Nussbauer A. and Hirt M.A. (2002). Modern Tubular Truss Bridges. IABSE Symposium Report, January 2002.

doi:10.2749/222137802796337332 Source: OAI

Hirt Manfred A. and Nussbauer Alain (2007). Tubular Trusses for Steel-Concrete Composite Bridges. Presented at: IABSE Symposium: Improving Infrastructure Worldwide, Weimar, Germany, 19-21 September 2007, 132-133

https://doi.org/10.2749/222137807796119988

Dauner H.-G., Oribasi A. & Wery D. (1998). The Lully Viaduct, a composite bridge with steel tube truss. Journal of Constructional Steel Research, v. 46, n. 1-3, pp. 67-68.

https://doi.org/10.1016/s0143-974x(98)00025-x

Dauner H.-G. (1998). Der Viadukt von Lully - Eine Neuheit im Verbundbrückenbau. Stahlbau, 67 (1), 1-14

https://doi.org/10.1002/stab.199800010

Zhijuan Tian, Yongjian Liu, Lei Jiang, Weiqing Zhu, Yinping Ma (2019). A review on application of composite truss bridges composed of hollow structural section members. J. Traffic Transp. Eng., 6(1), 94-108

https://doi.org/10.1016/j.jtte.2018.12.001

Taghizadeha M.H. & Behravesh A. (2015). Application of Spatial Structures in Bridge Deck. Civil Engineering Journal, 1(1)

10.28991/cej-2015-00000001

Bodnar L., Koval P., Stepanov S., Panibratets L. (2019). Operational state of bridges of Ukraine. Highwayman of Ukraine, 2, 57-67

10.33868/0368-8392-2019-2-258-57-68

Martinez-Munoz D., Marti J.V. & Yepes V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering, 2020, Article ID 8823370

https://doi.org/10.1155/2020/8823370

Reis A. & Pedro J.J.O. (2011). Composite truss bridges: newtrends, design and research. Steel Construction, 4(3), 176-182

https://doi.org/10.1002/stco.201110024

Bujnak J., Michalek P. & Baran W. (2018). Experimental and theoretical investigation of composite truss beams. MATEC Web of Conferences, 174, 04001

https://doi.org/10.1051/matecconf/201817404001

Lea L.A.A.S. and Batista E.M. (2020). Composite floor system with CFS trussed beams, concrete slab and innovative shear connectors. REM, Int. Eng. J., Ouro Preto, 73(1), 23-31

http://dx.doi.org/10.1590/0370-44672019730049

Luo L. & Zhang X. (2019). Flexural Response of Steel-Concrete Composite Truss Beams. Advances in Civil Engineering, 1502707

https://doi.org/10.1155/2019/1502707

Kuch T.P. (2012). Stress-strain state and load-bearing capacity of reinforced concrete beam structures with exposed pipe reinforcement. (Extended abstract of PhD dissertation). Poltava National Technical Yuri Kondratyuk University, Poltava

Shkoliar F.S. (2015). Tensely-deformed state and bearing capacity of reinforced concrete beams with remote working reinforcement. (Extended abstract of PhD dissertation). Poltava National Technical Yuri Kondratyuk University, Poltava

Braz J. (2009) Composite Truss Bridge Decks. (Master’s thesis). Technical University of Lisbon, Lisbon

Videira O. (2009). Composite Truss Bridge Decks. (Master’s thesis). Technical University of Lisbon, Lisbon

Azmi M H. (1972). Composite open-web trusses withmetal cellular floor. (Master’s thesis). Mc Master University, Hamilton

Chen Y., Dong J., Tong Jucan., Jiang R. & Yue Y. (2020). Flexural behavior of composite box girders with corrugated steel webs and trusses. Engineering Structures, 209(2020), 110275

https://doi.org/10.1016/j.engstruct.2020.110275

Zhang D., Zhao Q., Li F., & Huang Y. (2017). Experimental and numerical study of the torsional response of a modular hybrid FRP-aluminum triangular deck-truss beam. Engineering Structures, 133, 172-185

https://doi.org/10.1016/j.engstruct.2016.12.007

Zhang, D., Zhao, Q., Huang, Y., & Li, F. et al. (2013). Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system. Composite Structures 108 (2014) 600-615

10.1016/j.compstruct.2013.09.058

Kochkarev D., Galinska T. (2017) Calculation methodology of reinforced concrete elements based on calculated resistance of reinforced concrete. MATEC Web of Conferences 116, 02020, 1-9

10.1051/ matecconf/201711602020

Comité Européen de Normalisation (CEN), (2004b) “Eurocode 4: Design of Composite Steel and Concrete Strucures-Part 1-1: General Rules and Rules for Buildings”, European Standard BS EN 1994-1-1: 1994. European Committee for Standardization (CEN), Brussels, Belgium

Galinska T., Ovsii D., Ovsii M. (2018). The combining technique of calculating the sections of reinforced concrete bending elements normal to its longitudinal axis, based on the deformation model. International Journal of Engineering & Technology (UAE), 7(3.2), 123-127

10.14419/ijet.v7i3.2.14387

Galinska T.A., Muravl`ov V.V., Ovsiy N.A. (2014). Methodical bases of calculation of strength the normal cross section of rainforced concrete beams with concrete upper belt and external reinforcement, 17th Conference for Junior Researchers ‘Science-Future of Lithuania. Transport Engineering and Management’, Vilnius 2014. Retrieved from

http://jmk.transportas.old.vgtu.lt/index.php/conference/2014/paper/viewFile/352/352-1357-1-PB.pdf

Downloads

Published

2020-12-30

How to Cite

Galinska, T., Ovsii, D., & Ovsii, O. (2020). Flexural strength of span steel-reinforced concrete truss composite structures. Збірник наукових праць Галузеве машинобудування будівництво Academic Journal Industrial Machine Building Civil Engineering, 2(55), 26–34. https://doi.org/10.26906/znp.2020.55.2338