Flexural strength of span steel-reinforced concrete truss composite structures
DOI:
https://doi.org/10.26906/znp.2020.55.2338Keywords:
steel-reinforced, concrete, span, composite, truss structures, flexural strengthAbstract
The scientific article proposes a method for calculating the bending strength of steel-reinforced concrete (SRC) composite span truss structures. This method allows calculating the flexural strength of the calculated sections of steel-reinforced concrete truss structures, taking into account their stress-strain state at the time of maximum load-bearing capacity or failure. The analysis of experimental and theoretical values of flexural SRC truss beam strength showed their adequate convergence, which allows the application of the calculation method in practice design SRC span truss structures and members.
References
Schumacher A., Nussbauer A. and Hirt M.A. (2002). Modern Tubular Truss Bridges. IABSE Symposium Report, January 2002.
doi:10.2749/222137802796337332 Source: OAI
Hirt Manfred A. and Nussbauer Alain (2007). Tubular Trusses for Steel-Concrete Composite Bridges. Presented at: IABSE Symposium: Improving Infrastructure Worldwide, Weimar, Germany, 19-21 September 2007, 132-133
https://doi.org/10.2749/222137807796119988
Dauner H.-G., Oribasi A. & Wery D. (1998). The Lully Viaduct, a composite bridge with steel tube truss. Journal of Constructional Steel Research, v. 46, n. 1-3, pp. 67-68.
https://doi.org/10.1016/s0143-974x(98)00025-x
Dauner H.-G. (1998). Der Viadukt von Lully - Eine Neuheit im Verbundbrückenbau. Stahlbau, 67 (1), 1-14
https://doi.org/10.1002/stab.199800010
Zhijuan Tian, Yongjian Liu, Lei Jiang, Weiqing Zhu, Yinping Ma (2019). A review on application of composite truss bridges composed of hollow structural section members. J. Traffic Transp. Eng., 6(1), 94-108
https://doi.org/10.1016/j.jtte.2018.12.001
Taghizadeha M.H. & Behravesh A. (2015). Application of Spatial Structures in Bridge Deck. Civil Engineering Journal, 1(1)
Bodnar L., Koval P., Stepanov S., Panibratets L. (2019). Operational state of bridges of Ukraine. Highwayman of Ukraine, 2, 57-67
10.33868/0368-8392-2019-2-258-57-68
Martinez-Munoz D., Marti J.V. & Yepes V. (2020). Steel-Concrete Composite Bridges: Design, Life Cycle Assessment, Maintenance, and Decision-Making. Advances in Civil Engineering, 2020, Article ID 8823370
https://doi.org/10.1155/2020/8823370
Reis A. & Pedro J.J.O. (2011). Composite truss bridges: newtrends, design and research. Steel Construction, 4(3), 176-182
https://doi.org/10.1002/stco.201110024
Bujnak J., Michalek P. & Baran W. (2018). Experimental and theoretical investigation of composite truss beams. MATEC Web of Conferences, 174, 04001
https://doi.org/10.1051/matecconf/201817404001
Lea L.A.A.S. and Batista E.M. (2020). Composite floor system with CFS trussed beams, concrete slab and innovative shear connectors. REM, Int. Eng. J., Ouro Preto, 73(1), 23-31
http://dx.doi.org/10.1590/0370-44672019730049
Luo L. & Zhang X. (2019). Flexural Response of Steel-Concrete Composite Truss Beams. Advances in Civil Engineering, 1502707
https://doi.org/10.1155/2019/1502707
Kuch T.P. (2012). Stress-strain state and load-bearing capacity of reinforced concrete beam structures with exposed pipe reinforcement. (Extended abstract of PhD dissertation). Poltava National Technical Yuri Kondratyuk University, Poltava
Shkoliar F.S. (2015). Tensely-deformed state and bearing capacity of reinforced concrete beams with remote working reinforcement. (Extended abstract of PhD dissertation). Poltava National Technical Yuri Kondratyuk University, Poltava
Braz J. (2009) Composite Truss Bridge Decks. (Master’s thesis). Technical University of Lisbon, Lisbon
Videira O. (2009). Composite Truss Bridge Decks. (Master’s thesis). Technical University of Lisbon, Lisbon
Azmi M H. (1972). Composite open-web trusses withmetal cellular floor. (Master’s thesis). Mc Master University, Hamilton
Chen Y., Dong J., Tong Jucan., Jiang R. & Yue Y. (2020). Flexural behavior of composite box girders with corrugated steel webs and trusses. Engineering Structures, 209(2020), 110275
https://doi.org/10.1016/j.engstruct.2020.110275
Zhang D., Zhao Q., Li F., & Huang Y. (2017). Experimental and numerical study of the torsional response of a modular hybrid FRP-aluminum triangular deck-truss beam. Engineering Structures, 133, 172-185
https://doi.org/10.1016/j.engstruct.2016.12.007
Zhang, D., Zhao, Q., Huang, Y., & Li, F. et al. (2013). Flexural properties of a lightweight hybrid FRP-aluminum modular space truss bridge system. Composite Structures 108 (2014) 600-615
10.1016/j.compstruct.2013.09.058
Kochkarev D., Galinska T. (2017) Calculation methodology of reinforced concrete elements based on calculated resistance of reinforced concrete. MATEC Web of Conferences 116, 02020, 1-9
10.1051/ matecconf/201711602020
Comité Européen de Normalisation (CEN), (2004b) “Eurocode 4: Design of Composite Steel and Concrete Strucures-Part 1-1: General Rules and Rules for Buildings”, European Standard BS EN 1994-1-1: 1994. European Committee for Standardization (CEN), Brussels, Belgium
Galinska T., Ovsii D., Ovsii M. (2018). The combining technique of calculating the sections of reinforced concrete bending elements normal to its longitudinal axis, based on the deformation model. International Journal of Engineering & Technology (UAE), 7(3.2), 123-127
Galinska T.A., Muravl`ov V.V., Ovsiy N.A. (2014). Methodical bases of calculation of strength the normal cross section of rainforced concrete beams with concrete upper belt and external reinforcement, 17th Conference for Junior Researchers ‘Science-Future of Lithuania. Transport Engineering and Management’, Vilnius 2014. Retrieved from
http://jmk.transportas.old.vgtu.lt/index.php/conference/2014/paper/viewFile/352/352-1357-1-PB.pdf