MODIFICATION OF CHARACTERISTICS OF PHOTOCATALYTIC ACTIVE FUNCTIONAL UNITS OF ADAPTIVE AIR CLEANING SYSTEMS USING COORDINATION NITRATES RARE-EARTH ELEMENTS AND ALKALI METALS
DOI:
https://doi.org/10.26906/SUNZ.2022.3.022Keywords:
alkaline coordination lanthanide nitrates, formation conditions, crystal structure of compounds, characteristic properties, transformations with physical activation, modification of characteristics of titanate composite systems, adaptive control systemsAbstract
Information on alkaline coordination nitrates of rare-earth elements of the cerium subgroup - precursors of promising modern multifunctional materials - on the conditions of their formation and existence, the nature of the chemical bond, the composition, structure, shape of the Ln coordination polyhedra, the type of ligand coordination, and the existence of isotypic series in stoichiometry are generalized. composition, structure, characteristic properties. The data obtained (as primary information) is the basis for the detection, identification, and control of the phase state of processing objects in the preparatory stages, the choice of criteria for the compatibility of the components in the formation of single-layer and layered nanostructured oxide composite systems of lanthanides and transition elements for general purposes, with catalytic and photocatalytic activity, coatings self-cleaning with hydrophilic properties; development of various combined methods for their activation and identification of technological functional dependencies; controlled modification of the properties of the obtained target products. To increase the photocatalytic activity of coating samples based on highly dispersed anatase TiO2, a methodology for chemical modification of oxidation centers in their surface layer with heat treatment in contact with thermolysis products of alkaline coordination lanthanide nitrate melts is proposed. An effective test photocatalytic destruction of organic substrates vapors has been discovered using ethanol as an example.Effective activation of the functioning of functional units in the composition of selfadjusting air purification complexes using new photocatalytically active three-layer perovskite-like oxide materials M2Ln2Ti3O10 (M - Li, Na, K; Ln - La, Nd) has been proven. The variability of such methods for creating and modifying the characteristics of polyfunctional coatings is determined by the number and individual properties of representatives of the natural series of lanthanides, alkali metals of the periodic system, the peculiarities of their cooperative behavior in the preparatory technological stages, conditions and methods of activation of formation processes, the nature of the substrate, and other factors.Downloads
References
A. L. Naumov, D. V. Kapko. СО2 – Ventilation Systems’ Efficiency Criterion. Inside air quality. Demand controlled ventilation. АВОК. – 2015. – № 1. – С. 12-22
Air Handling Units & Ventilation Systems. https://www-daikin-eu.translate.goog/en_us/architectsconsultants.html?
Professional factory waste gas treatment equipment. https://www.klean-esp.com/Uploads/202106/60c172fef34d5.jpg
Разработка и производство вентиляционных установок. https://ventmachine.ru/fko.html
Фотокаталитические фильтры в современных кондиционерах и воздухоочистителях. https://daikin.kh.ua/
Панасюгин А. С., Павловский Н.Д. Очистка воздуха промышленных предприятий от органических загрязнителей сиспользованием фотокаталитического метода. Литье и металлургия. – 2012. – № 3. – С. 66-70.
Boxue Zhang, Shengxin Cao, Meiqi Du, Xiaozhou Ye and Jianfeng Ye. Titanium Dioxide (TiO2) Mesocrystals: Synthesis,Growth Mechanisms and Photocatalytic Properties. Review. Catalysts. 2019. Vol. 9. P. 91-118. URL:https://doi.org/10.3390/catal9010091.
Murray, J., Wriedt H. The O− Ti (oxygen-titanium) system. Journal of Phase Equilibria. 1987. Vol. 8 (2). P. 148-165.
Fujishima, A., Zhang X., Trykc D.A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports. 2008.Vol. 63(12). P. 515-582
Кудренко Е.О. Структура прекурсоров сложных оксидов РЗЭ, полученных методом термолиза растворителя /Е.О. Кудренко, И.М. Шмытько, Г.К. Струкова // Физика твердого тела. – 2008. – Т. 50. – Вып. 5. – С. 924 – 930.
Родионов, И. А. Фотокаталитическая активность слоистых перовскитоподобных оксидов в практически значимых химических реакциях / И. А. Родионов, И. А. Зверева // Усп. хим. – 2016. – T. 85, № 3. – С. 248–279.
Lagaly, G. Interaction of alkylamines with different types of layered compounds. Solid State Ionics. 1986. Vol. 22, No. 1, P. 43-51.
Masato Machida, Kaori Miyazaki, Shigenori Matsushima and Masao Arai. Photocatalytic properties of layered perovskite tantalates, MLnTa2O7 (M = Cs, Rb, Na, and H; Ln = La, Pr, Nd, and Sm). J. Mater. Chem. 2003. Vol.13. P. 1433–1437
Gopalakrishnan, J. Transformations of Ruddlesden-Popper oxides tonew layered perovskite oxides by metathesis reactions / J. Gopalakrishnan, T. Sivakumar, K. Ramesha et al. // Chem. Phys. – 2000. – Vol. 9. – P. 6237-6241.
Schaak, R. E. KLnTiO4 (Ln=La, Nd, Sm, Eu, Gd, Dy): A New Series of Ruddlesden–Popper Phases Synthesized by Ion- Exchange of HLnTiO4 / R.E. Schaak, T.E. Mallouk // J. Solid State Chem. – 2001. – Vol. 161(2). – P. 225–232.
Zhu, W. J. Synthesis and characterization of layered titanium oxides NaRTiO4 (R = La, Nd and Gd) / W.J. Zhu, H.H. Feng, P.H. Hor // Mater. Res. – 1996. – Bull. 31(1). – P.107–111.
Richard, M. Synthesis, characterization, and acid exchange of the layered perovskites A2Nd2Ti3O10 (A = Na, K). / M. Richard, L. Brohan, M. Tournoux // J. Solid State Chem. – 1993. – Vol. 112. – P. 345–354.
Gopalakrishnan, J. A2Ln2Ti3O10 (A = potassium or rubidium; Ln = lanthanum or rare earth): a new series of layered perovskites exhibiting ion exchange / J. Gopalakrishnan, V. Bhat, // Inorg. Chem. – 1987. – Vol. 26(26). – P. 4299–4301.
Utkina, T., Chislov M., Silyukov O., Zvereva I. TG and DSCinvestigation of water intercalation and protonation processes in perovskite-like layered structure of titanate К2Nd2Ti3O10. J. of Thermal Analysis and Calorimetry. 2016. Vol. 125. P. 281–287.
Дрючко О.Г., Стороженко Д.О., Бунякіна Н.В. Фізико-хімічне охарактеризування координаційних нітратів РЗЕ і лужних металів – прекурсорів оксидних поліфункціональних матеріалів. Вісник НТУ «ХПІ». Серія: Хімія, хімічна технологія та екологія. 2018. № 39 (1315). С. 3–13. https://doi.org/10.20998 / 2079-0821.2018.39.01.
Dryuchko, O. Features of transformations in REE-containing systems of nitrate precursors in preparatory processes of formation of multifunctional oxide materials / O. Dryuchko, D. Storozhenko, A. Vigdorchik, N. Bunyakina, I. Ivanytska et al. // Molecular Crystals and Liquid Crystals. – 2019. – Vol. 72(1). – P. 199-214. https://doi.org/10.1080/15421406.2018.1542066
Дрючко О.Г. Особливості перетворень в РЗЕ-вмісних системах нітратних прекурсорів у підготовчих процесах формування перовскітоподібних оксидних матеріалів / О.Г. Дрючко, Д.О. Стороженко, Н.В. Бунякіна, Б.О. Коробко, І.О.Іваницька, А.М. Пащенко // Вісник національного технічного університету «ХПІ», серія: Хімія, хімічна технологія та екологія. – Х.: НТУ «ХПІ». – 2016. – № 22(1194). – С. 63-71.
Rodionov I.A. Photocatalytic properties and hydration of perovskite-type layered titanates A2Ln2Ti3O10 (A = Li, Na, K; Ln = La, Nd) / I. A. Rodionov, O. I. Silyukov, T. D. Utkina, M. V. Chislov, Yu. P. Sokolova & I. A. Zvereva // Russian Journal of General Chemistry. – 2012. – Vol. 82(7). – P. 1191-1196.
Аносов В.Я., Озерова М.И., Фиалков Ю.Я. Основы физико-химического анализа. М.: Наука, 1976. 503 с.
Горощенко Я. Г. Физико-химический анализ гомогенных и гетерогенных систем. К.: Наукова думка, 1978. 490 с.
Бусев А.И., Типцова В.Г., Иванов В.М. Руководство по аналитической химии редких элементов. М.: Химия, 1978. 432 с.
Крешков А.П. Основы аналитической химии. Количественный анализ. – М.: Химия, 1976, кн. 2. – 480 с.
Storozhenko D.O. Phase Formation in REE-Containing Water-Salt Systems at the Preparatory Stages of the Multicomponent Oxide Functional Materials Formation / D.O. Storozhenko, O.G. Dryuchko, N.V. Bunyakina, I.O. Ivanytska // Innovations in Corrosion and Materials Science. – 2015. – Vol. 5. – No. 2. – P. 80-84.
Vigdorchik А.G., Malinovskiy Yu.А., Dryuchko А.G. Low-temperature X-ray structure analysis of potassium-neodymium nitrates K3[Nd2(NO3)9] and K2[Nd(NO3)5(H2O)2]. Crystallography. 1992. Vol. 37. Iss. 4. P. 882-888.
Eriksson B. Crystal and molecular structure of potassium diaquapentanitratolanthanate (III) / B. Eriksson, L.O. Larrson, L. Niinisto et al. // Acta Chem. Scand. – 1980. – A 34. – No. 8. – P. 567-572.
Meille, V. Review on methods to deposit catalysts on structured surfaces. Appl. Catal. 2006. Vol. 315. P. 1-17.
Avila, P. Monolithic reactors for environmental applications: A review on preparation technologies / P. Avila, M. Montes, E.E. Miró // Chem. Eng. J. – 2005. – Vol. 109. – P. 11-36.
Cromer D.T., Herrington K. The structures of anatase and rutile. J. Amer. Chem. Society. 1955. Vol. 77. № 18. Р. 4708-4709.
Schaak R.E. Perovskites by Design:– A Toolbox of Solid-State Reactions / R.E. Schaak, T.E. Mallouk // Chemistry of Materials. – 2002. – Vol. 14. – No. 4, – P. 1455-1471.
Storozhenko D., Dryuchko O., Golik Yu., Kytaihora K. Monitoring activity of the CO2 emission objects system components in formation of the air mass in individual closed premises. Academic journal. Series: Industrial Machine Building, Civil Engineering. 2019. No. 2(53). P. 157-170. https://doi.org/10.26906/znp.2019.53.1907.