Approbation of the express penetration method for assessing the strength of sedimentary cohesive rocks
DOI:
https://doi.org/10.26906/znp.2023.61.3777Keywords:
well, sedimentary cohesive rock, strength, express method of penetration, specific penetration resistance, uniplanar displacement, internal friction angle, specific adhesion, the equation of interrelationAbstract
The advantages of express methods of penetration and probing for evaluating the mechanical parameters of cohesive sedimentary rocks over traditional methods of testing them in single-plane displacement devices, odometers, and stabilometers are analyzed, such as: complete independence from the applied force and cone immersion depth; simplicity and reliability of the equipment; high reliability of results, etc. The methodology and results of 185 sets of penetration-shear tests of various clay rocks, from sandy loams to clays, are presented. Their results were used to determine the strength indicators of cohesive rocks (angle of internal friction and specific adhesion). Through statistical processing of experimental data, it was confirmed that for the water-saturated state of clay rocks there is an almost functional relationship between the penetration index and the porosity coefficient.
References
1. Asad M.M. (2019). Oil and Gas Disasters and Industrial Hazards Associated with Drilling Operation. An Extensive Literature Review. 2nd Intern. Conf. on Computing, Mathematics and Engineering Technologies (ICoMET), March, 1–6.
https://doi.org/10.1109/ICOMET.2019.8673516
2. Onyshchenko V., Vynnykov Y., Shchurov I. & Kharchenko M. (2023). Case Study: Sites for the Drilling and Repair of Oil and Gas Wells. Lecture Notes in Civil Engineering, 299, 367-389.
https://link.springer.com/book/10.1007/978-3-031-17385-1
3. Jaeger J.C., Cook N.G.W. & Zimmerman R. (2007). Fundamentals of Rock Mechanics. Wiley-Blackwell.
https://doi.org/:10.1017/CBO9780511735349
4. Schnaid F. (2009). In-situ testing in geomechanics – the main tests. Taylor & Francis Group, London.
https://doi.org/10.1201/9781482266054
5. Das B.M. (2019). Advanced Soil Mechanics. London: CRC Press.
https://doi.org/10.1201/9781351215183
6. Meigh A.C. (1987). Cone Penetration Testing: Methods and Interpretation. Butterworths, London.
7. Mayne P.W., Saftner D. & Dagger R. (2018). Cone Penetration Testing Manual for Highway Geotechnical Engineers. Report.
https://www.dot.state.mn.us/research/reports/2018/201832.pdf
8. Zotsenko M., Vynnykov Yu., Lartseva I. & Sivitska S. (2018). Ground base deformation by circular plate peculiarities. MATEC Web of Conferences 230, 02040. 7th Intern. Scientific Conf. “Reliability and Durability of Railway Transport Engineering Structures and Buildings” (Transbud-2018).
1. Asad M.M. (2019). Oil and Gas Disasters and Industrial Hazards Associated with Drilling Operation. An Extensive Literature Review. 2nd Intern. Conf. on Computing, Mathematics and Engineering Technologies (ICoMET), March, 1–6.
https://doi.org/10.1109/ICOMET.2019.8673516 DOI: https://doi.org/10.1109/ICOMET.2019.8673516
2. Onyshchenko V., Vynnykov Y., Shchurov I. & Kharchenko M. (2023). Case Study: Sites for the Drilling and Repair of Oil and Gas Wells. Lecture Notes in Civil Engineering, 299, 367-389. DOI: https://doi.org/10.1007/978-3-031-17385-1_30
https://link.springer.com/book/10.1007/978-3-031-17385-1
3. Jaeger J.C., Cook N.G.W. & Zimmerman R. (2007). Fundamentals of Rock Mechanics. Wiley-Blackwell.
https://doi.org/:10.1017/CBO9780511735349
4. Schnaid F. (2009). In-situ testing in geomechanics – the main tests. Taylor & Francis Group, London.
https://doi.org/10.1201/9781482266054 DOI: https://doi.org/10.1201/9781482266054
5. Das B.M. (2019). Advanced Soil Mechanics. London: CRC Press.
https://doi.org/10.1201/9781351215183 DOI: https://doi.org/10.1201/9781351215183
6. Meigh A.C. (1987). Cone Penetration Testing: Methods and Interpretation. Butterworths, London. DOI: https://doi.org/10.1016/B978-0-408-02446-4.50007-8
7. Mayne P.W., Saftner D. & Dagger R. (2018). Cone Penetration Testing Manual for Highway Geotechnical Engineers. Report.
https://www.dot.state.mn.us/research/reports/2018/201832.pdf
8. Zotsenko M., Vynnykov Yu., Lartseva I. & Sivitska S. (2018). Ground base deformation by circular plate peculiarities. MATEC Web of Conferences 230, 02040. 7th Intern. Scientific Conf. “Reliability and Durability of Railway Transport Engineering Structures and Buildings” (Transbud-2018).
https://doi.org/10.1051/matecconf/201823002040 DOI: https://doi.org/10.1051/matecconf/201823002040
9. Powell J.J.M., Shields C.H. & Wallace C.F. (2015). Liquid Limit testing – only use the Cone Penetrometer! Proc. of the XVI ECSMGE Geotechnical Eng. for Infrastructure and Development. Edinburg, 3305-3310.
10. Uhlig M. & Herle I. (2015). Advanced analysis of cone penetration tests. Proc. of the XVI ECSMGE Geotechnical Eng. for Infrastructure and Development. Edinburg, 3073-3078.
https://doi.org/10.1680/ecsmge.60678
11. Kryvosheiev P., Farenyuk G., Tytarenko V., Boyko I., Kornienko M., Zotsenko M., Vynnykov Yu., Siedin V., Shokarev V. & Krysan V. (2017). Innovative projects in difficult soil conditions using artificial foundation and base, arranged without soil excavation. Proc. of 19th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Seoul, 3007-3010.
https://doi.org/10.1680/geot.1997.47.3.693 DOI: https://doi.org/10.1680/geot.1997.47.3.693
12. Ahmadi M.M. & Golestani Dariani A.A. (2017). Cone penetration test in sand: A numerical-analytical approach. Computers and Geotechnics. Vol. 90, 176-189.
https://doi.org/10.1016/j.compgeo.2017.06.010 DOI: https://doi.org/10.1016/j.compgeo.2017.06.010
13. Golestani Dariani A.A. & Ahmadi M.M. (2019). CPT Cone Factor: Numerical-Analytical Approach. Intern. Journal of Geomechanics, 19(12). DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001521
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29GM.1943-5622.0001521
14. Liyanapathirana S. (2022). Large deformation finite element analysis to predict penetration resistance of offshore pipelines. Proc. of the 20th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Sydney: Australian Geomechanics Society. Vol. 2, 821-826.
15. Robertson P.K. (2016). CPT-based Soil Behaviour Type (SBT) Classification System – an update. Canadian Geotechnical Journal. 53(12),
https://doi.org/10.1139/cgj-2016-0044 DOI: https://doi.org/10.1139/cgj-2016-0044
16. Xing Y., Kulatilake P. & Sandbak L. (2019). Rock Mass Stability Around Underground Excavations in a Mine. London. CRC Press.
https://doi.org/10.1201/9780429343230 DOI: https://doi.org/10.1201/9780429343230
17. Golestani Dariani A.A. & Naserifar A. (2024). Effects of Seismic Waves on the Segmental Lining of Shiraz Subway Line 2: A Case Study. Geotechnical and Geological Engineering. Vol. 42, 1089-1104. DOI: https://doi.org/10.1007/s10706-023-02606-2
https://link.springer.com/article/10.1007/s10706-023-02606-2
18. Briaud J.-L. (2013). Geotechnical Engineering: Unsaturated and Saturated Soils. Wiley. DOI: https://doi.org/10.1002/9781118686195
https://doi.org/:10.1002/9781118686195
19. Zein A.K.M. (2017). Estimation of undrained shear strength of fine grained soils from cone penetration resistance. Intern. Journal of Geo-Engineering, 8(1). DOI: https://doi.org/10.1186/s40703-017-0046-y
https://link.springer.com/article/10.1186/s40703-017-0046-y
20. Liu L., Cai G., Liu X., Li X., Liu S., Puppala A.J. (2021). Estimation of Undrained Shear Strength of Overconsolidated Clay Using a Maximum Excess Pore Pressure Method Based on Piezocone Penetration Test (CPTU). Geotech. Test. J. 44(4), 1153-1162.
https://doi.org/10.1520/GTJ20190248 DOI: https://doi.org/10.1520/GTJ20190248
21. Yang Z., Liu X., Guo L., Cui Y., Su X., Jia C. & Ling X. (2022). CPT-Based estimation of undrained shear strength of fine-grained soils in the Huanghe River Delta. J. Acta Oceanologica Sinica, 41(5): 136-146. DOI: https://doi.org/10.1007/s13131-021-1946-4
http://www.aosocean.com/article/doi/10.1007/s13131-021-1946-4
22. Equihua-Anguiano L.N., Orozco-Calderon M. & Foray P. (2013). Estimation of undrained shear strength of soft obtained by cylinder vertical penetration. Proc. of the 18th Intern. Conf. on Soil Mechanics and Geotechnical Engineering. Paris. 2933-2936.
https://www.cfms-sols.org/sites/default/files/Actes/2933-2936.pdf
23. Chang C., Zoback M.D. & Khaksar A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering. Vol. 51, Is. 3–4, 223-237.
https://doi.org/10.1016/j.petrol.2006.01.003 DOI: https://doi.org/10.1016/j.petrol.2006.01.003
24. Zotsenko M.L., Vynnykov Yu., Pinchuk N.M. & Manzhalii S.M. (2019). Research of “influence area” parameters of the foundations arranged without soil. IOP Conf. Series Materials Science and Engineering. 708(1):012076.
https://doi:10.1088/1757-899X/708/1/012076 DOI: https://doi.org/10.1088/1757-899X/708/1/012076
25. Lu Y., Duan Z., Zheng J., Zhang H., Liu X. & Luo S. (2020). Offshore Cone Penetration Test and Its Application in FullWater-Depth Geological Surveys. OP Conf. Series: Earth and Environmental Science 570(4):042008
https://doi:10.1088/1755-1315/570/4/042008 DOI: https://doi.org/10.1088/1755-1315/570/4/042008
26. Guo S.-Z. & Liu R. (2015). Application of cone penetration test in offshore engineering, Chinese Journal of Geotechnical Engineering, vol. 37, no. 1, 207-211.
https://doi:10.11779/CJGE2015S1039
27. Wu B., Wang G., Li J., Wang Y. & Liu B. (2018). Determination of the Engineering Properties of Submarine Soil Layers in the Bohai Sea Using the Piezocone Penetration Test. Advances in Civil Engineering. 6: 1-13. Follow journal.
https://doi:10.1155/2018/9651045 DOI: https://doi.org/10.1155/2018/9651045
28. Ma H., Zhou M., Hu Y. & Hossain M.S. (2017). Effects of cone tip roughness, in-situ stress anisotropy and strength inhomogeneity on CPT data interpretation in layered marine clays: numerical study. Engineering Geology, Vol. 227, 12-22. DOI: https://doi.org/10.1016/j.enggeo.2017.06.003
https://doi.org/1016/j.enggeo.2017.06.003 DOI: https://doi.org/10.1088/1475-7516/2017/06/003
29. Solberg I-L., Long M., Baranwal V.C., Gylland A.S. & Rønning J.R. (2016). Geophysical and geotechnical studies of geology and sediment properties at a quick-clay landslide site at Esp, Trondheim, Norway. Engineering Geology. Vol. 208, 214-230.
https://doi.org/10.1016/j.enggeo.2016.04.031 DOI: https://doi.org/10.1016/j.enggeo.2016.04.031
30. Vynnykov Yu., Kharchenko M., Dmytrenko V. & Manhura A. (2020). Probabilistic calculation in terms of deformations of the formations consisting of compacted overburden of quarternary rocks. Mining of Mineral Deposits, 14(4), 122-129.
https://doi.org/10.33271/mining14.04.122 DOI: https://doi.org/10.33271/mining14.04.122
31. Shen S.L., Wang J.P., Wu H.N., Xu Y.S., Ye G.L. & Yin Z.Y. (2015). Evaluation of hydraulic conductivity for both marine and deltaic deposit based on piezocone test. Ocean Eng. Vol. 110, 174-182.
https://doi.org/10.1016/j.oceaneng.2015.10.011 DOI: https://doi.org/10.1016/j.oceaneng.2015.10.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Yuriy Vynnykov, Andrii Bondar, Anna Liashenko, Valeriy Novokhatniy, Мaryna Rybalko

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Published 2023-12-21