Reflection of statistical nature of steel strength in steel structures standards

Authors

DOI:

https://doi.org/10.26906/znp.2020.55.2344

Keywords:

software, spatial model, portal frame, buckling, restraint

Abstract

The main stages of creating a spatial model of the steel frame are considered for industrial buildings or warehouses with a pitched roof. Different approaches to the analysis of internal forces of the first and second orders and the stability calculation for steel elements of building structures under the combined action of compression and transverse bending are highlighted using software applications. Ways to improve the process of creating a calculation model, design documentation, and working drawings are outlined. A comparison of specialized software products for calculating building models with portal frames (Autodesk Robot Structural Analysis Professional, PortalPlus, Consteel, Tekla Structural Designer, and Dlubal RFEM) is presented. Their advantages and disadvantages are indicated

 

References

Hernández S., Fontán A.N., Perezzán J.C. & Loscos P. (2005). Design optimization of steel portal frames. Advances in Engineering Software, 36(9), 626-633.

http://dx.doi.org/10.1016/j.advengsoft.2005.03.006

Shah S.N.R., Aslam M. & Sulong N.H.R. (2016). Geometrically optimum design of steel portal frames. University of Engineering and Technology Taxila. Technical Journal, 21(4), 24-30.

Hradil P., Mielonen M. & Fülöp L. (2010). Advanced design and optimization of steel portal frames. Journal of Structural Mechanics, 43(1), 44-60.

Saka M.P. (2003). Optimum design of pitched roof steel frames with haunched rafters by genetic algorithm. Computers & Structures, vol. 81, no. 18-19, 1967-1978.

http://dx.doi.org/10.1016/S0045-7949(03)00216-5

Nagy Zs., Pop A., Moiș I., & Ballok R. (2016). Stressed skin effect on the elastic buckling of pitched roof portal frames. In Structures, vol. 8, 227-244.

http://dx.doi.org/10.1016/j.istruc.2016.05.001

Wrzesien A.M., Lim J.B.P., Xu Y., MacLeod I.A. & Lawson R.M. (2015). Effect of Stressed Skin Action on the Behaviour of Cold-Formed Steel Portal Frames. Engineering Structures, 105, 123-136.

http://dx.doi.org/10.1016/j.engstruct.2015.09.026

Kindmann R. & Krahwinkel M. (2001). Bemessung stabilisierender Verbände und Schubfelder. Stahlbau 70, 885-899.

https://doi.org/10.1002/stab.200102860

Kuhlmann U. (2009). Stahlbau-Kalender 2009: Schwerpunkt – Stabilität. Berlin: Ernst & Sohn.

https://doi.org/10.1002/9783433600320

Koschmidder D.M. & Brown D.G. (2012). Elastic design of single-span steel portal frame buildings to Eurocode 3. Steel Construction Institute.

Portal frames. Retrieved from www.steelconstruction.info

Marsh K. (2016). Autodesk Robot Structural Analysis Professional 2016: Essentials. Marsh API.

https://sections.arcelormittal.com

Downloads

Published

2020-12-30

How to Cite

Hudz, S., Horb, O., Pents, V., & Dariienko, V. (2020). Reflection of statistical nature of steel strength in steel structures standards. Збірник наукових праць Галузеве машинобудування будівництво Academic Journal Industrial Machine Building Civil Engineering, 2(55), 60–65. https://doi.org/10.26906/znp.2020.55.2344