The definition of the direction of forces arising during the interworking of a car’s steer wheel with chassis dynamometer
DOI:
https://doi.org/10.26906/znp.2018.51.1312Keywords:
steerable wheel, vehicle, chassis dynamometer, Euler's angleAbstract
The article gives the theoretical substantiation of the forces determination that arise during the steerable vehicle wheel with chassis dynamometer interaction taking into account the wheels angles setting in relation to the longitudinal, vertical and transverse vehicle axes. The transition from mobile to fixed coordinate system using Euler angles is considered.
The transitions comparison from the stationary coordinate system to the moving one in the system an aircraft axes and ship axes. It made it possible to move to the fixed coordinate system for a steerable vehicle wheel. A table of transition between moving and stationary reference systems has been made. The table provides an opportunity to determine the projections of forces that arise when the steerable vehicle wheel is interacting with the bearing surface when the angles of its installation are relative to the frame, are changed.
References
. Хачатуров, А.А. (Ред.). (1976). Динамика системы «дорога – шина – автомобиль – водитель». Москва: Машиностроение.
. Gillespie, T.D. (1997). Fundamentals of Vehicle Dy-namics. SAE International
. Великанов, Д.П. (Ред.). (1977). Автомобильные транспортные средства. Москва: Транспорт.
. Гришкевич, А.И. (1968). Автомобили: теория. Минск: Выша школа.
. Wong, J.Y. (2008). Theory of Ground Vehicles. NYSE: John Wiley & Sons Inc.
. Taghavifar, H. & Mardani, A. (2017). Off-road Vehicle Dynamics. Springer International Publishing
. Сирота, В.І. (2005). Основи конструкції автомо¬білів. Київ: Арістей.
. Лудченко, О.А. (2003). Технічне обслуговування і ремонт автомобілів. Київ: Знання-Прес.
. Заикин, Г.М. (1960). Стенд для проверки схождения колес. Автомобильный транспорт, 7, 26-27.
. Othman, N.A. & Daniyal, H. (2015). Investigation on Chassis Dynamometer with Capability to Test Regenerative Braking Function. International Journal of Power Electronics and Drive System (IJPEDS), 6(3), 657-664. http://umpir.ump.edu.my/id/eprint/11368.
. Sayers, M.W. & Han, D. (1996). A Generic Multibody Vehicle Model for Simulating Handling and Braking. Vehicle System Dynamics, 25(1), 599-613. doi:10.1080/00423119608969223.
. MacAdam, C. (1988). Development of Driver-Vehicle Steering Interaction Models for Dynamic Analysis. Univer-sity of Michigan Transportation Research Institute.
https://apps.dtic.mil/dtic/tr/fulltext/u2/a208244.pdf.
. Hong, C.W. & Shio, T.W. (1996). Fuzzy control strat-egy design for an autopilot on automobile chassis dyna-mometer test stands. Mechatronics, 6(5), 537-555. doi:10.1016/0957-4158(96)00010-4
. Лурье, А.И. (1961). Аналитическая механика. Мос-ква, Техиздат.