AUTOMATIC LIGHTING CONTROL SYSTEMS - AN EFFECTIVE WAY TO SAVE ELECTRICITY AND IMPROVE LIGHTING QUALITY

Authors

  • D. Kyslytsia
  • Y. Basova
  • S. Kyslytsia
  • H. Kozhushko
  • R. Zakharchenko

DOI:

https://doi.org/10.26906/SUNZ.2024.4.031

Keywords:

LED lamps, lighting control systems, flickering, dimming, pulse width modulation

Abstract

This paper examines the typical functions of lighting control systems and the prospects for their development using modern advancements in LED technology, the miniaturization of components such as sensors that can be integrated into LED modules, the use of wireless communication, and the capability of managing information via the Internet. The main typical functions of automatic lighting control systems include: maintaining artificial lighting in indoor spaces at an appropriate visual level; reducing the power consumption of lighting systems by utilizing natural lighting; reducing the power consumption of lighting systems by optimizing their use at every moment, particularly on weekends and holidays, depending on the presence of people in the room, etc.; combined lighting control, which uses both manual and automated methods, allowing the determination of lighting parameters while considering individual consumer preferences; selection of lighting parameters based on previous settings data, which can improve the lighting environment; provision of lighting parameters aligned with the concept of integrative lighting ("lighting for people," HCL) by automatically adjusting the level of illumination and color of light throughout the day, etc. Lighting control systems are primarily based on the use of time, presence, and light level sensors, or combined sensors that integrate these functions. In global practice, two main output current control interfaces are used for automatic lighting control: analog and digital. This article provides information on the features of adjusting LED parameters using analog and digital interfaces, examines certain issues in the creation of intelligent lighting systems, and explores the prospects of using artificial intelligence in lighting systems. Conclusions are drawn regarding the energy efficiency of automatic lighting control systems, the basic requirements for their parameters, and future development prospects.

Downloads

Download data is not yet available.

References

Commission Regulation (EU) 2019/2020 of 1 October 2019 laying down ecodesign requirements for light sources and separate control gears pursuant to Directive 2009/125/EC of the European Parliament and of the Council and repealing Commission Regulation (EC) No 244/2009, (EC) No 245/2009 and (EU) No 1194/2012 (Text with EEA relevance).

Commission Delegated Regulation (EU) 2019/2015 of 11 March 2019 supplementing Regulation (EU) 2017/1369 of the European Parliament and of Council with regard to energy labelling of light sources and repealing Commission Delegated Regulation (EU) No 874/2012//(Text with EEA relevance).

CIE 158:2009 Ocular lighting effects on human physiology and behaviour.

IES TM-18-18. (2011). Light and human health: An overview of the impact of light on visual, circadian, neuroendocrine and neurobehavioral.

Ladopoulos, I., & Shaw, K. (2017). IALD white paper: Lighting design for health, wellbeing and quality of light, a holistic approach on human centric lighting. IALD. Available at: http://iald. org/News/Reflections-Newsletter/IALDREFLECTIONS-24-February-2017. Accessed May 8, 2018.СІЕ

IALD. (2017, February). Joint position paper by LightingEurope and the International Association of Lighting Designers (IALD) on Human Centric Lighting. Available at: https://www.iald.org/ Advocacy/Publications. Accessed September 30, 2018.

Rossi M. Circadian Lighting Design in the LED Era. Cham : Springer International Publishing, 2019. URL:https://doi.org/10.1007/978-3-030- 11087-1.

Caicedo, D., Li, S., & Pandharipande, A. (2017). Smart lighting control with workspace and ceiling sensors. Lighting Research and Technology, 49(4), 446–460. https://doi.org/10.1177/ 1477153516629531.

Neida, B. V., Manicria, D., & Tweed, A. (2001). An analysis of the energy and cost savings potential of occupancy sensors for commercial lighting systems. Journal of the Illuminating Engineering Society, 30(2), 111–125. https://doi.org/10.1080/00994480.2001.10748357.

Meugheuvel, N., et al. (2014). Distributed lighting control with daylight and occupancy adaptation. Energy and Buildings, 75, 321–329. https://doi.org/10.1016/j.enbuild.2014.02.016.

Yeh, L., et al. (2010). Autonomous light control by wireless sensor and actuator networks. IEEE Sensors Journal, 10(6), 1029–1041. https://doi.org/10.1109/jsen.2010.2042442.

Casambi. (2018). Lighting control for the modern world. The most robust, cost effective and future proof wireless lighting controlsolution. Available at:https://casambi.com/ (Retrieved: October 21, 2018).

Leitner, G. (2015). The future home is wise, not smart: A Human-centric perspective on next generation domestic technologies(1st ed. 2015 ed). Chamu.a: Springer

Gonzalez, L. I. L., Troost, M., & Amft, O. (2013) Using a thermopile matrixsensor to recognize energy-related activities in offices. Procedia Computer Science, 19, 678–685. [In The 4th International Conference on Ambient Systems, Networks and Technologies (ANT 2013), the 3rd International Conference on Sustainable Energy Information Technology (SEIT-2013)]. https:// doi.org/10.1016/j.procs.2013.06.090.

Berson D. M Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock / D. M. Berson, F. A. Dunn, M. Takao // Science. – 2002. – Vol. 295. – P. 1070.

Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor / G. Brainard, J. Hanifi n, J. Greeson, B. Byrne, G. Glickman, E. Gerner, M. Rollag // Journal of Neuroscience. – 2001. – Vol. 21. – No. 16. – P. 6405.

Thapan K. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans / K. Thapan, J. Arendt, D. Skene // J. Physiol. – 2001. – Vol. 535 (pt 1). – P. 261.

ДСТУ EN ІЕС 63128:2022 Інтерфейс управління освітленням для регулювання яскравості. Аналоговий інтерфейс регулювання напруги для електронних пристроїв керування джерелом струму

ДСТУ EN ІЕС 62386-105:2022 Цифровий адресний інтерфейс освітлення. Частина 105. Особливі вимоги до апаратури керування. Передавання мікропрограмного забезпечення (EN ІЕС 62386-105:2020, IDT; ІЕС 62386-105:2020, IDT)

Kun-Che Ho, Shun-Chung Wang and Yi-Hua Liu. Dimming Techniques focusing on the improvement in luminous efficiency for High-brightness LED’s// Electronics 2021. №10, Р.2161.

Manish Kumar Barwar, Lalit Kumar Sahu, Prabhat Ranjan Tripathi, Ranchi, Pallavee Bhatnagar, Hema Chander Allamsetty. Krishna Kuar Gupta, Josep M. Guerrero Demystifying the Devices Behind the LED Light in Published in: IEEE Industrial Electonics Magazine (Early Access) Page(s):2-13 Date of Publication: 16 May 2022.

Горшков В.В. Енергоефективний електротехнічний комплекс з елементами інтелектуального керування процесом освітлення вулиць населених пунктів: монографія. (під редакцією проф. О.М. Сінчука). - 2023. - 94 с.

Philips Hue. (2012). The definition of smart lighting. Available at: https://www.google.com/search? q=philips+hue&ie=utf8&oe=utf-8&client=firefox-b (Retrieved: October 25, 2018).

Floyd, D., et al. (1995). Energy efficiency technology demonstration project for Florida educational facilities: Occupancy sensors. FSEC-CR-867-95.

Newsham, G., et al. (2004). Effect of dimming control on office worker satisfaction and performance. In Proceedings of the IESNA Annual Conference. Tampa, New York: Illuminating Engineering Society of North America.

Newsham, G. R., et al. (2008). Individual control of electric lighting in a Daylit space. Lighting Research & Technology, 40(1), 25–41. https://doi.org/10.1177/1477153507081560.

Rea, M. S., Figueiro, M. G., & Bullough, J. D. (2002). Circadian photobiology: an emerging framework for lighting practice and research. Lighting Research & Technology, 34(3), 177–187. https://doi.org/10.1191/1365782802lt057oa.

Davila J. The Impact of Artificial Intelligence (AI) in LED Lighting /J .Davila// ISSUU from designing lighting. April 2021.

Візір Ю. С. Штучний інтелект у системах управління освітленістю / Ю. С. Візір // Автоматизація та Приладобудування («Automation and Development of Electronic Devices» АDED-2023) : збірник студентських наукових статей. – Харків : ХНУРЕ, 2024. Вип. 1. С. 7-12.

Published

2024-11-28

Most read articles by the same author(s)