METHODS OF COMPLEX OBJECTS AUTOMATIC RECOGNITION BY FORM
DOI:
https://doi.org/10.26906/SUNZ.2023.4.080Keywords:
recognition, object classification, ellipticity coefficient, form complexity coefficient, measurement accuracyAbstract
The analysis of literary sources shows that the need to recognize both large and small objects is an important direction in the development of robots’ technical vision modern systems and other automation technical means, which must be able to recognize any object that has fallen into their field of vision by the measured values of attributes, assign it to a certain class, make a decision, and issue a command to the robot's manipulators. The article considers approaches to recognition with the subsequent classification of small objects by such features as the coefficient of ellipticity and the form complexity coefficient. By identifying features and their combinations for identifying similar objects, you can train a machine learning model to recognize the necessary types of patterns. A comparison of the measuring methods the areas of the projections of objects whose shape is close to rectangular, objects of a round shape, and objects that represent a long, elongated figure of a complex shape is carried out. The accuracy of measurement of area and perimeters of complex figures is estimated, errors of selected values of radii of small objects are determined depending on quantization step. The possibility of recognizing objects using traditional image processing methods or modern deep learning networks is considered: an open library for working with algorithms for computer vision, machine learning and image processing OpenCV, the latest recognition models SSD, R-FCN, Faster R-CNN, Mask R-CNN and YOLO, in the architecture of which you can see many improvements and advances in methodologies detection of objects. The advantages of using the popular Faster R-CNN recognition model, which is a combination of RPN and Fast R-CNN models, for fast recognition of small objects of complex shape are shown. It is concluded that automatic recognition systems that work according to this technique, allow to explore a variety of objects, have a sufficiently high speed, but due to the complexity of their use in real time is justified only in cases when these objects have a complex form and cannot be recognized and classified by common simpler methods and means.Downloads
References
Система технічного зору: особливості, завдання, принципи роботи, основні компоненти [Електронний ресурс]- Режим доступу: http://bigbro.com.ua/sistematehnichnogo-zoru-osoblivosti-zavdannya-printsipi-roboti-osnovni-komponenti/.
Антонюк В.С., Вислоух С.П., Катрук О.В. Класифікаціяі розпізнання образів при автоматизованому проектуванні технологічних процесів. // Надійність інструменту та оптимізація технологічних систем. Збірник наукових праць. – Краматорськ–Київ, Вип. № 23, 2008. – С. 176–182.
David Forsyth - Computer Vision: A Modern Approach. – 2004. – 928 с.
Multi-scale Template Matching using Python and OpenCV by Adrian Rosebrock [Електронний ресурс]- Режим доступу: https://www.pyimagesearch.com/2015/01/26/multi-scale-template-matching-usingpython-opencv/.
Hastie T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. – 2nd ed, 2009р. – 746 с.
Довбиш А. С. Основи теорії розпізнавання образів : навч. посіб. : у 2 ч. / А. С. Довбиш, І. В. Шелехов. – Суми : Сумський державний університет, 2015. – Ч. 1. – 109с.
Зайченко Ю. П. Основи проектування інтелектуальних систем: навчальний посібник / Ю. П. Зайченко. – К. : 106 Видавничий Дім «Слово», 2004. – 352 с.
Hastie T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. – 2nd ed. / T. Hastie, R. Tibshirani, J. Friedman. – Springer-Verlag, 2009. – 746 p.
Han J. Data mining: concepts and techniques. J. Han, M. Kamber, J. Pei. – Morgan Kaufmann / Elsevier, 2012. – 744 p.
What is OpenCV? The Complete Guide [Електронний ресурс] - Режим доступу: https://viso.ai/computer-vision/opencv/.
The PASCAL Visual Object Classes Homepage [Електронний ресурс] - Режим доступу: http://host.robots.ox.ac.uk/pascal/VOC/.
What is the COCO Dataset? [Електронний ресурс] - Режим доступу: https://viso.ai/computer-vision/coco-dataset/.