Аспекти розрахунку опору паропроникненню пароізоляції огороджувальних конструкцій
Анотація
Робота присвячена уточненню методики визначення розрахункових параметрів зовнішнього повітря (температури та відносної вологості) та величини опору паропроникненню шару пароізоляції. При визначенні опору паропроникненню шару пароізоляції виходять з нульового балансу вологонакопичення за рік та величини допустимого підвищення вологості матеріалу протягом періоду вологонакопичення. Зазвичай використовують у розрахунках температуру та відносну вологість зовнішнього повітря за період трьох найбільш холодних місяців опалювального періоду або періоду із середньомісячними від’ємними температурами. Але тривалість періоду вологонакопичення може не співпадати з цим періодом і величина опору паропроникненню пароізоляції в огороджувальних конструкціях, з умови підвищення вологості матеріалу протягом періоду вологонакопичення, може визначатися не вірно. Для підвищення точності розрахунку пропонується використовувати період місяців, коли відбувається вологонакопичення в утеплювачі огороджувальної конструкції. Було проведено перевірку на прикладі суміщеного покриття житлового будинку, побудовані графіки зміни парціального тиску насиченої водяної пари ( ) та фактичного парціального тиску ( ) у місяці року, коли відбувається накопичення вологи в огородженні (утеплювачі), виконано розрахунки вологонакопичення в шарі утеплювача з визначеною величиною опору паропроникненню пароізоляції. Було запропоновано уточнення методики розрахунку. Так, на початку, за методикою наведеною у ДСТУ-Н Б В.2.6-192:2013, необхідно визначити місяці коли відбувається вологонакопичення в утеплювачі огороджувальної конструкції. Потім визначити середні температуру та відносну вологість зовнішнього повітря протягом цих місяців та розрахувати опір паропроникнення шару пароізоляції.
Посилання
https://doi.org/10.22337/2077-9038-2018-3-130-134
2. Perekhozhintsev A.G. & Voitovich E.V. (2019). On the quality of standardization of thermal protection of buildings. Construction and reconstruction, no. 3 (83), 100-111.
https://doi.org/10.33979/2073-7416-2019-83-3-100-111
3. Kupriyanov V.N. & Safin I.Sh. (2011). Design of enclosing structures taking into account the diffusion and condensation of vaporous moisture Izvestia KazGASU, No. 1 (15), 93-103
4. Kupriyanov V.N. & Safin I.Sh. (2010). Water vapor permeability and design of enclosing structures. Academia. Architecture and construction, no. 3, 385-390
5. Zubarev K.P. (2016). Calculation of the limitation of moisture in the enclosing structure with an increased level of energy saving with a mineral wool insulation and a brickwork base for a period with negative average monthly outdoor temperatures. Innovative science, no. 3, 71-73
6. Gagarin V.G., Khavanov P.A. & Zubarev K.P. (2020). The position of the maximum wetting plane in building enclosing structures. IOP Conf. Ser.: Mater. Sci. Eng. 896 012016
https://doi.org/10.1088/1757-899X/896/1/012016
7. Vytchikov Yu.S., Saparev M.E. & Kostuganov A.B. (2021). Investigation of the humidity regime of multilayer enclosing structures of buildings and structures IOP Conf. Ser.: Mater. Sci. Eng. 1015 012035
https://doi.org/10.1088/1757-899X/1015/1/012035
8. Černý R., Podêbradská J. & Drchalová J. (2002) Water and Water Vapor Penetration Through Coatings. Journal of Building Physics, 26(2), 165-177
https://doi.org/10.1177/0075424202026002975
9. Jerman M. & Černý R. (2012). Effect of moisture content on heat and moisture transport and storage properties of thermal insulation materials. Energy and Buildings Vol. 53, 39-46
http://dx.doi.org/10.1016/j.enbuild.2012.07.002
10. Yurin A.I., Galinska T.A., Pashchenko A.N., Kaminska L. & Tverdokhleb V.S. (2014). Analysis of the norms of resistance to vapor permeation of the vapor barrier layer in the coating of refrigerator buildings. Building structures, 80, 223-230
11. Avramenko Yu.A., Leshchenko M.V., Mahas N.M., Malyushitsky O.V., Semko V.A., Sklyarenko S.A., Filonenko A.I., Yurin A.I., Semko A.V. (Ed.). (2017). Thermal insulation, repair and reconstruction of flat roofs of civil buildings: allowance. Poltava: Astra
12. Filonenko A.I. & Yurin A.I. (2018). Energy efficiency of buildings. Poltava: Astra
13. Semko O.V., Yurin O.I., Filonenko O.I. & Mahas N.M. (2020). Investigation of the Temperature–Humidity State of a Tent-Covered Attic. Proceedings of the 2nd International Conference on Building Innovations. Lecture Notes in Civil Engineering, 73. Springer, Cham.
https://doi.org/10.1007/978-3-030-42939-3_26
14. DSTU-N B V.2.6-192:2013. (2014). Guidelines for the computational assessment of the thermal and moisture state of enclosing structures. Kiev: Ministry of Regional Development of Ukraine.
15. DBN B.2.6-31: 2016. (2016). Thermal insulation of buildings. Kyiv: Ministry of Regional Development of Ukraine
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.