PROPOSALS FOR THE ESTIMATING THE REFLECTIVE SURFACE AREA OF AIRCRAFT BASED ON THREE-DIMENSIONAL MODELING SOFTWARE PACKAGES
DOI:
https://doi.org/10.26906/SUNZ.2025.3.010Keywords:
aircraft, mathematical modeling method, computer modeling, programming, range portrait, optical methodAbstract
Relevance. The development of military aircraft, both unmanned and manned, faces an acute challenge to reduce their radar visibility. There are sophisticated software products that can calculate the effective scattering surface of an aircraft of any shape with great accuracy. However, they are united by the demand on computing resources when modeling a radio signal reflected from a complex aircraft shape. Such demandingness leads to large time costs when it is necessary to iteratively change the shape of the aircraft. Object of research: the process of estimating the effective scattering surface of aircraft using three-dimensional modeling. Purpose: development of proposals for the use of three-dimensional modeling software packages for quick and approximate estimation of the area of aircraft surfaces that reflect electromagnetic radiation for a preliminary assessment of their visibility in the radar range. Research results. To reduce the cost of computing resources and quickly estimate the surface area of aircraft, its simplified form of the model is used, which reduces the accuracy of calculations. The paper substantiates the use of three-dimensional modeling packages, for example, Blender 3D, an open source software, to study radar reflection from an aircraft model, based on the methods and assumptions of geometric optics. Conclusions. The use of three-dimensional modeling packages for preliminary and rapid acquisition of the aircraft shape is relevant at the preliminary design stage. The use of various surface shaders for a three-dimensional aircraft model is necessary to simulate the refraction, reflection, and absorption of radio waves.Downloads
References
1. Sukharevsky, O. & Vasilets, V. (2024). Scattering Characteristics of Aerial and Ground Radar Objects. CRC Press. 530 p., doi: http://dx.doi.org/10.1201/9781032676425 DOI: https://doi.org/10.1201/9781032676425
2. Сухаревський О. І., Василець В. О., Нечитайло С. В., Резніченко О. А., Кудряшов Г. В. (2023). Дослідження радіолокаційних характеристик моделі баражуючого боєприпасу “Shahed-136”. Наука і техніка Повітряних Сил Збройних Сил України, № 2 (51), С. 56-62, doi: https://doi.org/10.30748/nitps.2023.51.07 DOI: https://doi.org/10.30748/nitps.2023.51.07
3. Diaz V. & Torres J. M. G. (2012). Analysis of radar cross section assessment methods and parameters affecting it for surface ships. Ciencia y tecnología de buques, 6(11), pp. 91-106, doi: http://dx.doi.org/10.25043/19098642.72 DOI: https://doi.org/10.25043/19098642.72
4. Наконечний, В. С., Присяжний, А. Е., Побережний, А. А. (2005) Електродинамічне моделювання з використанням безлунних камер НВЧ. Методика оцінювання коефіцієнта безлунності. Системи обробки інформації. № 9(49), С. 116–123, URL: https://core.ac.uk/download/232885938.pdf
5. Гніденко, І. А., Воробйов, І. Є. (2016). Аналіз сучасних продуктів 3D-моделювання, можливості їх застосування в навчальному процесі. Проблеми інформатизації та управління. Збірник наукових праць Національного авіаційного університету, Том 3, 55, С. 25–28, doi: https://doi.org/10.18372/2073-4751.3.11317 DOI: https://doi.org/10.18372/2073-4751.3.11317
6. IMAGEIO, URL: https://github.com/imageio/imageio/ (дата звернення 16.07.2025).
7. NumPy, URL: https://numpy.org/ (дата звернення 16.07.2025).
8. Matplotlib: Visualization with Python, URL: https://matplotlib.org/ (дата звернення 16.07.2025).
9. Blender3D, URL: https://www.blender.org/ (дата звернення 16.07.2025).
10. Hendriyani Y. & Amrizal V. A. (2019) The comparison between 3D studio max and blender based on software qualities.Journal of Physics: Conference Series. Vol. 1387:012030, doi: http://dx.doi.org/10.1088/1742-6596/1387/1/012030 DOI: https://doi.org/10.1088/1742-6596/1387/1/012030
11. Caudron, R. & Nicq, P. A. (2015). Blender 3D By Example: Design a complete workflow with Blender to create stunning 3D scenes and films step-by-step! Packt Publishing Ltd., 334 p., URL: https://www.amazon.com/Blender-3D-Example-RomainCaudron/dp/1785285076
12. Kent, B. R. (2015). 3D scientific visualization with Blender®. Morgan & Claypool Publishers, 90 p., doi: http://dx.doi.org/10.1088/978-1-6270-5612-0 DOI: https://doi.org/10.1088/978-1-6270-5612-0
13. Shah, F.A., Qazi, A.A., Khan, A.S. & Farooq, M.U. (2023). Challenges and Opportunities in Tailless Aircraft Stability and Control. National University of Sciences & Technology (Preprint), 15 September 2023. DOI: 10.13140/RG.2.2.29321.42085. URL: https://www.researchgate.net/publication/373925686_Challenges_and_Opportunities_in_Tailless_Aircraft_Stability_and_Control
14. Tickoo, S. (2018). MAXON CINEMA 4D R19 Studio: A Tutorial Approach. CADCIM Technologies, 396 p., UDL: https://www.amazon.com/MAXON-CINEMA-4D-R19-Studio/dp/1640570217
15. Tickoo, S. (2018). Autodesk Maya 2019: A Comprehensive Guide. Cadcim Technologies. 608 p., URL: https://www.cadcim.com/autodesk-maya-2019-a-comprehensive-guide
16. Park, J. E. (2007). Understanding 3D animation using Maya. Springer Science & Business Media. 344 p., URL: https://www.amazon.com/Understanding-3D-Animation-Using-Maya/dp/038700176X
17. Stroud, I., & Nagy, H. (2011). Solid modelling and CAD systems: how to survive a CAD system. Springer Science & Business Media. 689 p., URL: https://link.springer.com/book/10.1007/978-0-85729-259-9 DOI: https://doi.org/10.1007/978-0-85729-259-9
18. Corbel, C., Bourlier, C., Pinel, N. & Chauveau, J. (2013). Rough surface RCS measurements and simulations using the physical optics approximation. IEEE Transactions on Antennas and Propagation, 61(10), pp. 5155-5165, doi: http://dx.doi.org/10.1109/TAP.2013.2265253 DOI: https://doi.org/10.1109/TAP.2013.2265253
19. Sun, H. & Qin, Y. (2022). Stealthy Configuration Optimization Design and RCS Characteristics Study of Microsatellite. Aerospace, 9(12):815, doi: http://dx.doi.org/10.3390/aerospace9120815 DOI: https://doi.org/10.3390/aerospace9120815
20. Shi-Gang, Z., Hai-Tao, M., Jie, M. & Jian-Ying, L. (2024). A Generalized RCS Definition and Its Application. 2024 IEEE International Symposium on Antennas and Propagation and INC/USNC‐URSI Radio Science Meeting (AP-S/INC-USNCURSI), pp. 1315-1316, doi: http://dx.doi.org/10.1109/AP-S/INC-USNC-URSI52054.2024.10686945 DOI: https://doi.org/10.1109/AP-S/INC-USNC-URSI52054.2024.10686945
21. Bera, S., Sur, S. N., Singh, A. K. & Bera, R. (2024). RCS measurement and ISAR imaging radar in VHF/UHF radio channels. Int. Journal of Remote Sensing, 45(7), pp. 2159-2181, doi: http://dx.doi.org/10.1080/01431161.2024.2326533 DOI: https://doi.org/10.1080/01431161.2024.2326533
22. Ullah, M. U., Latef, T. B. A., Othman, M., Hussein, M. I., Alkhoori, H. M., Yamada, Y., Kamardin K. & Khalid, R. (2024). A progression in the techniques of reducing RCS for the targets. Alexandria Engineering Journal, 100, 153-169. https://doi.org/10.1016/j.aej.2024.05.001 DOI: https://doi.org/10.1016/j.aej.2024.05.001
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Yevhenii Tolkachenko, Oleksii Kolomiitsev, Serhii Osiievskyi, Artem Samokish, Volodymyr Panchenko

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.