FOG COMPUTING TECHNOLOGY IN DISTRIBUTED SYSTEMS
DOI:
https://doi.org/10.26906/SUNZ.2024.1.094Keywords:
computer system, distributed system, fog computing, cloud computing, Internet of ThingsAbstract
Topicality. The concept of fog computing is an evolutionary stage in the development of the cloud concept. It occupies a leading position among the general trends in the development of information technology. The emergence of this concept is closely related to the origin and development of the concept of the Internet of Things. The results. The subject area was analyzed. It includes an analysis of current trends in the field of organizing distributed computing, an analysis of the use of population algorithms and ontology models for solving optimization problems in distributed systems, an analysis of models, methods and algorithms for solving the problem of transferring the computational load in distributed systems implemented on the basis of fog computing. Conclusion. It has been revealed that the concept of fog computing makes it possible to solve most of the problems associated with the load on the communication infrastructure and the latency of information exchange. But they do not resolve issues related to the high dynamism of the foggy environment and the concomitant decrease in the efficiency of the distributed system.Downloads
References
Rehan M.M., Rehmani M.H. Blockchain-enabled Fog and Edge Computing: Concepts, Architectures and Applications: Concepts, Architectures and Applications. Taylor and Fransis, 2020. 302 p.
Jonathan Bar-Magen Numhauser. Fog Computing- Introduction to a new Cloud evolution. Proceedings from the CIES III Congress, January 2012 (англ.) // Escrituras silenciadas: paisaje como historiografía / José Francisco Forniés Casals (ed. lit.), Paulina Numhauser (ed. lit.), Proceedings from the CIES III Congress, January 2012.
Hamid Reza Arkian, Abolfazl Diyanat, Atefe Pourkhalili. MIST: Fog-based data analytics scheme with cost-efficient resource provisioning for IoT crowdsensing applications // Journal of Network and Computer Applications. – 2017-03-15. – Vol. 82. – P. 152–165. – ISSN 1084-8045. doi: http://doi.org/10.1016/j.jnca.2017.01.012
Kuchuk G., Kovalenko A., Komari I.E., Svyrydov A., Kharchenko V. Improving big data centers energy efficiency: Traffic based model and method. Studies in Systems, Decision and Control, vol 171. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.). Springer Nature Switzerland AG, 2019. Pp. 161-183. DOI: http://doi.org/10.1007/978-3-030-00253-4_8
Коваленко А. А., Кучук Г. А. Методи синтезу інформаційної та технічної структур системи управління об’єктом критичного застосування. Сучасні інформаційні системи. 2018. Т. 2, № 1. С. 22–27. DOI: https://doi.org/10.20998/2522-9052.2018.1.04
Nechausov A., Mamusuĉ I., Kuchuk N. Synthesis of the air pollution level control system on the basis of hyperconvergent infrastructures. Сучасні інформаційні системи. 2017. Т. 1, № 2. С. 21 – 26. DOI: https://doi.org/10.20998/2522-9052.2017.2.04
Iervolino, R., Manfredi, S. Global stability of multi-agent systems with heterogeneous transmission and perception functions. Automatica. 2024. 162, 111510. DOI: http://doi.org/10.1016/j.automatica.2024.111510
Кучук Н. Г., Мерлак В. Ю., Скородєлов В. В. Метод зменшення часу доступу до слабкоструктурованих даних. Сучасні інформаційні системи. 2020. Т. 4, № 1. С. 97-102. doi: https://doi.org/10.20998/2522-9052.2020.1.14
Shi, H., Lin, W., Liu, C., Yu, J. A Novel Heterogeneous Parallel System Architecture Based EtherCAT Hard Real-Time Master in High Performance Control System. Electronics. 11(19), 3124. Doi: http://doi.org/10.3390/electronics11193124
She R., Sun M. Security Energy Efficiency Analysis of CR-NOMA Enabled IoT Systems for Edge-cloud Environment. Int. Journal of Computational Intelligence Systems. 2023. Vol. 16(1), 118. DOI: http://dx.doi.org/10.1007/s44196-023-00273-y.
Петровська І. Ю., Кучук Г. А. Розподіл обчислювальних ресурсів у хмарних системах. Системи управління, навігації та зв'язку. 2022. Вип. 2 (68). С. 75–78. DOI: http://dx.doi.org/10.26906/SUNZ.2022.2.075.
Kuchuk G., Nechausov S., Kharchenko, V. Two-stage optimization of resource allocation for hybrid cloud data store. Int. Conf. on Information and Digital Technologies. Zilina, 2015. P. 266-271. DOI: http://dx.doi.org/10.1109/DT.2015.7222982.
Кучук Г.А., Коваленко А. А., Лукова-Чуйко Н. В. Метод мінімізації середньої затримки пакетів у віртуальних з’єднаннях мережі підтримки хмарного сервісу. Системи управління, навігації та зв’язку. Полтава . ПНТУ, 2017. Вип. 2(42). С. 117-120.
Sharma, M., Kaur, P. Reliable federated learning in a cloud-fog-IoT environment. Journal of Supercomputing. 2023. Vol. 79(14). P. 15435–15458. DOI: http://dx.doi.org/10.1007/s11227-023-05252-w.
Baucas, M.J., Spachos, P. Improving Remote Patient Monitoring Systems Using a Fog-Based IoT Platform with Speech Recognition. 2023. IEEE Sensors Journal. Vol. 23(15). P. 17611–17618. DOI: http://dx.doi.org/10.1109/JSEN.2023.3287916.
Essalhi, S.E., Raiss El Fenni, M., Chafnaji, H. A new clustering-based optimised energy approach for fog-enabled IoT networks. IET Networks. Vol. 12(4). P.155–166. DOI: http://dx.doi.org/10.1049/ntw2.12082.