IMPLEMENTATION OF AUTOMATIC LICENSE PLATE RECOGNITION SYSTEM WITH RASPBERRY PI
DOI:
https://doi.org/10.26906/SUNZ.2023.1.134Keywords:
license plate recognition system, machine learning algorithms, deep learning methods, convolutional neural networks, intelligent embedded systems, Raspberry PIAbstract
The object of study in the article is machine learning methods for automatic license plate recognition. The goal is to implement the system of automatic license plate recognition with Raspberry PI 4. The main tasks of this research are to analyse systems of automatic license plate recognition that implemented with capabilities of Raspberry PI and to implement own system. As a result of research of similar systems common problems were discovered and resolved. The developed system uses modern approach and technologies of artificial convolutional neural networks to solve occurred problems. It is important to note that the implemented system performs better than similar systems for large shooting angles. As a result of the work automatic license plate recognition system using Raspberry PI boards for intelligent embedded systems was implemented. Research has been conducted and the great potential of the proposed development has been revealed in environments where the speed of the system will not be critical.Downloads
References
Kuchuk, H. System of license plate recognition considering large camera shooting angles / H. Kuchuk, A. Podorozhniak, N. Liubchenko, D. Onishchenko // Radioelectronic and Computer Systems. – 2021. – No. 4 (100). – pp. 82 – 91, https://doi.org/10.32620/reks.2021.4.07.
Подорожняк, А.O. Інтелектуальна система розпізнавання номерів автотранспортних засобів / А.O. Подорожняк, Н.Ю. Любченко, Д.П. Оніщенко // The I International Science Conference on Multidisciplinary Research, January 19 – 21, 2021, Berlin, Germany. – Berlin, 2021. – pp. 1051-1055, https://doi.org/10.46299/ISG.2021.I.I.
Liew, C. Real time mobile based license plate recognition system with neural networks / C. Liew, C.O. Kim, R. Alfred, T.G. Tse, P. Anthony // Journal of Physics: Conference Series. – 2020. – Vol. 1502. – Iss. 1. – Article number 012032, https://doi.org/10.1088/1742-6596/1502/1/012032.
Адреси камер фотовідеофіксації та дозволена швидкість руху. Офіційний сайт МВС України [Електронний ресурс]. – Режим доступу: https://mvs.gov.ua/uk/ministry/projekti-mvs/avtofotovideofiksaciya-porusen-pdr/adresi-kamer-fotovideofiksaciyi-ta-dozvolena-svidkist-ruxu-1.
Liubchenko, N. Automation of vehicle plate numbers identification on one-aspect images / N. Liubchenko, O. Nakonechnyi, A. Podorozhniak, H. Siulieva // Advanced Information Systems. – 2018. – No. 1. – pp. 52 – 55, https://doi.org/10.20998/2522-9052.2018.1.10.
Anuar, F. Smart campus initiative: car entrance, exit and parking management prototype development / F. Anuar, N. Lingas // 8th Brunei International Conference on Engineering and Technology 2021, November 8 – 10, 2021, Bandar Seri Begawan, Brunei. – AIP Conference Proceedings. –2023. – Vol. 2643. – Article number 040029, https://doi.org/10.1063/5.0110444.
Podorozhniak, A. Research of the multispectral imaging analysis system based on Raspberry Pi / A. Podorozhniak, M. Kvochka // Проблеми інформатизації: тези доповідей дев’ятої міжнародної НТК. 18-19 листопада 2021 року, т. 2 – Черкаси: ЧДТУ; Баку: ВА ЗС АР, Белсько-Бяла: УТіГН, Харків: НТУ "ХПІ", ДП "ПД ПКНДІ АП"; 2021. – С. 68. [Електронний ресурс]. – Режим доступу: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/58381/1/Podorozhniak_Research_2021.pdf.
Jabbar, W.A. An IoT Raspberry Pi-based parking management system for Smart Campus / W.A. Jabbar, C.W. Wei, N.A.A.M. Azmi, N.A. Haironnazli // Internet of Things. – 2021. – Vol. 14. – Article number 100387, https://doi.org/10.1016/j.iot.2021.100387.
Abdellatif, M.M. A low cost IoT-based Arabic license plate recognition model for smart parking systems / M.M. Abdellatif, N.H. Elshabasy, A.E. Elashmawy, M. AbdelRaheem // Ain Shams Engineering Journal. – 2023. – Article number 102178, https://doi.org/10.1016/j.asej.2023.102178.
Yang, Z. Research on deep learning garbage classification system based on fusion of image classification and object detection classification / Z. Yang, Y. Bao, Y. Liu, Q. Zhao, H. Zheng, Y. Bao // Mathematical Biosciences and Engineering. – 2022. – Vol. 20. – Iss. 3. – pp. 4741-4759, https://doi.org/10.3934/mbe.2023219.
License Plate Recognition using Raspberry Pi and OpenCV [Електронний ресурс]. – Режим доступу: https://circuitdigest.com/microcontroller-projects/license-plate-recognition-using-raspberry-pi-and-opencv.
Подорожняк, A. Нейромережева система розпізнавання автономера / A. Подорожняк, Н. Любченко, Г. Гейко // Системи управління, навігації та зв’язку. – Полтава: ПНТУ, 2020. – Т. 4 (62). – С. 88-91, https://doi.org/10.26906/SUNZ.2020.4.088.
Firasanti, A. License Plate Detection using OCR method with Raspberry Pi / A. Firasanti, T.E. Ramadhani, M.A. Bakri, H.E.A.А.O. Zaki // 15th International Conference on Telecommunication Systems, Services, and Applications (TSSA-2021), 18-19 November 2021, Bali, Indonesia. – Bali, 2021, https://doi.org/10.1109/TSSA52866.2021.9768252.
Chiriac, R.L. I built a DIY license plate reader with a Raspberry Pi and machine learning [Електронний ресурс]. – URL: https://towardsdatascience.com/i-built-a-diy-license-plate-reader-with-a-raspberry-pi-and-machine-learning-7e428d3c7401.
Parzhin, Y. Detector neural network vs connectionist ANNs / Y. Parzhin, V. Kosenko, A. Podorozhniak, O. Malyeyeva, V. Timofeyev // Neurocomputing. – 2020. – Vol. 414. – pp. 191 – 203, https://doi.org/10.1016/j.neucom.2020.07.025.
He, K. Mask R-CNN / K. He, G. Gkioxari, P. Dollár, R. Girshick // 2017 IEEE International Conference on Computer Vision (ICCV), Venice, October 22-29 2017. – Venice, 2017. – pp. 2980-2988, https://doi.org/10.1109/ICCV.2017.322.
Parthasarathy, D. A Brief History of CNNs in Image Segmentation: From R-CNN to Mask R-CNN [Електронний ресурс]. – Режим доступу: https://blog.athelas.com/a-brief-history-of-cnns-in-image-segmentation-from-r-cnn-to-mask-r-cnn34ea83205de4.