THE METHODS OF DATA STORING OF A RECOMMENDATION SYSTEM BASED ON LINKED LISTS
DOI:
https://doi.org/10.26906/SUNZ.2021.4.059Keywords:
recommendation system, databases, computer simulation model, linked list, unrolled linked list, hash table, B-tree, B -tree, binary decision diagramAbstract
The goal of this work is to research and comparative analysis of methods and data structures for storing information of a recommendation system in order to compare the effectiveness of their use in terms of time and memory costs. The choice of the method for presenting the data used by the recommendation system is important since an effective way of building a database for the operation of such a system can reduce the amount of resources required and increase the number of available algorithms for generating lists of recommendations, and is also important from the point of view of the quality of its work, speed, scalability, and ease of performing basic operations with data to generate recommendations. The presence of a large number of different methods for implementing databases and presenting information that can be used to build recommendation systems necessitates a comparative analysis and selection of the optimal method and data structure for storing information in them. In the work, research was carried out of various data structures that can be used to store information of the recommender system. In particular, such as linked list, unrolled linked list, hash table, B-tree, B+-tree and binary decision diagram. To carry out experiments comparing the effectiveness of using various data structures in terms of time and memory costs, a computer model of a simplified recommendation system was developed, in which three main entities were distinguished - an agent, a session, and an object. The best results were obtained with data storing methods using unrolled and inverted unrolled linked lists. Therefore, it was decided to also conduct an additional series of experiments with these data structures for different sizes of the list bl ock. The unrolled list showed the best results in terms of memory used and session generation time. The inverted unrolled list showed an advantage in the generation of recommendations.Downloads
References
Recommender Systems Handbook (2010) Editors F. Ricci, L. Rokach, B. Shapira, P. B. Kantor, New York, NY, Springer-Verlag New York, Inc., USA. 842 p.
Valois B.Jr.C., Oliveira M.A. (2011) Recommender systems in social networks. JISTEM J.Inf.Syst. Technol. Manag., Vol.8 No.3. P. 681-716. URL: https://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-17752011000300009
Фаулер М., Садаладж П. Дж. (2013) NoSQL: Новая методология разработки нереляционных баз данных. Издательский дом «Вильямс», Москва. 192 с.
Meier A., Kaufmann M. (2019) SQL & NoSQL Databases. Springer Vieweg, Wiesbaden. P. 201-218. – URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.468.7089&rep=rep1&type=pdf
Cure O., Blin G. (2014) RDF Database Systems: Triples Storage and SPARQL Query Processing. Elsevier Science. 256 p.
Yi N., Li C., Feng X., Shi M. (2017) Design and implementation of movie recommender system based on graph database. 14th Web Information Systems and Applications Conference (WISA), IEEE. P. 132-135.
Angles R. (2012) A comparison of current graph database models. IEEE 28th International Conference on Data Engineerin. Workshops, IEEE. P. 171-177.
Засядко Г.Е., Карпов А.В. (2017) Проблемы разработки графовых баз данных. Инженерный вестник Дона. No1 (44). URL: https://cyberleninka.ru/article/n/problemy-razrabotki-grafovyh-baz-dannyh
Мелков С., Мусатов Д., Савватеев А. (2013) Моделирование социальных сетей. URL: https://kpfu.ru/docs/F117464271/MMS_socnet_cities.pdf
Берновски М.М., Кузюрин Н.Н. (2012) Случайные графы, модели и генераторы безмасштабных графов. Труды ИСП РАН. URL: https://cyberleninka.ru/article/n/sluchaynye-grafy-modeli-i-generatory-bezmasshtabnyh-grafov
Райгородский А.М. (2012) Математические модели Интернета. “Квант” No4. С. 12-16. – URL: https://elementy.ru/nauchno-populyarnaya_biblioteka/431792
Meleshko Ye. (2019) Computer model of virtual social network with recommendation system. Scientific journal Innovative Technologies and Scientific Solutions for Industries, Kharkiv: NURE, Issue 2(8). P. 80-84
Робинсон Я., Вебер Д., Эифрем Э. (2016) Графовые базы данных: новые возможности для работы со связанными данными. ДМК Пресс, Москва. 256 с.
Neo4j Documentation (2021), Official website of the graph database Neo4j. URL: https://neo4j.com/docs/
Міхав В.В., Мелешко Є.В., Якименко М.С. (2020) Метод зберігання даних рекомендаційної системи на основі бінарних діаграм рішень. Системи управління, навігації та зв’язку. ПНТУ, Полтава. Т. 2 (60). С. 85-89.
Міхав В.В., Мелешко Є.В., Шимко С.В. (2021) Методи та структури даних для реалізації бази даних рекомендаційної системи соціальної мережі. Техніка в сільськогосподарському виробництві, галузеве машинобудування, автоматизація: збірник наукових праць ЦНТУ, Кропивницький. Вип. 4(35). С. 8-16.