NEURAL NETWORK SYSTEM FOR LICENSE PLATES RECOGNIZING
DOI:
https://doi.org/10.26906/SUNZ.2020.4.088Keywords:
measuring system, temperature measurement, microprocessor meter, data processingAbstract
Thesubjectofthisresearchistheneuralnetworksystemofidentificationofcarlicenseplatesonimagesobtained by means of video recording means. The purpose of this work is to ensure the process of recognition of license plates of vehicles in a wide range of changing angles of observation and light levels. The task is to study the neural network system for recognizing license plates on images obtained by means of video recording in a wide range of changes in the angles of observation and light levels. The analysis of problems of methods and algorithms of automated recognition license plates of cars has shown that it is most perspective to use neural network algorithms which are adjusted to change of conditions of supervision of means of traffic control. The solution to the problem of recognizing car license plates can be presented in the form of a number of subtasks, which include primary image processing, detection of the area of the license plate in the image, character segmentation and character recognition. Conclusions: the proposed neural network system for license plate recognition, which allows you to search for text areas at any angle in different lighting conditions. The system allows you to recognize car license plates in a wide range of changes in distance to the car, viewing angles and light levels
Downloads
References
International Organization of Motor Vehicle Manufacturers (OICA). [Електронний ресурс] Режим доступу: www.oica.net/wp-content/uploads//Total_in-use-All-Vehicles.xlsx.
Кийко В.М. Локализация и распознавание автомобильных номеров на изображениях / В.М. Кийко // Управляющие системы и машины. – 2017. – No 6. – С. 26-40. – doi: https://doi.org/10.15407/usim.2017.06.026.
Любченко Н.Ю. Метод автоматизированной идентификации автомобильных номеров на основе обработки одноракурсных изображений / Н.Ю. Любченко, А.А. Наконечный, А.О. Подорожняк // Вісник Харківського національного автомобільно-дорожнього університету. – Харків: ХНАДУ. – Вип. 61-62 – 2013. – С. 292-295.
ДСТУ 4278:2019 Дорожній транспорт. Знаки номерні транспортних засобів. Загальні вимоги. Чинний від 16.03.2020. – Київ: ДП “УкрНДНЦ”, 2020. – 31 с.
Liubchenko N. Automation of vehicle plate numbers identification on one-aspect images / N. Liubchenko, O. Nakonechnyi, A. Podorozhniak, H. Siulieva // Advanced Information Systems. – Kharkiv: NTU "KhPi". – 2018 – Vol.2, N.1. – pp. 52 – 55. – doi: https://doi.org/10.20998/2522-9052.2018.1.10.
Szeliski R. Computer Vision. Algorithms and Applications / R. Szeliski. – London: Springer -Verlag, 2011. – 812 p. – doi: https://doi.org/10.1007/978-1-84882-935-0.
Rosebrock A. OpenCV: Automatic License/Number Plate Recognition (ANPR) with Python. [Електр. ресурс] Режим доступу: https://www.pyimagesearch.com/2020/09/21/opencv-automatic-license-number-plate-recognition-anpr-with-python/.
LeCun, Y. Convolutional Networks and Applications in Vision / Y. LeCun, K. Kavukcuoglu, C. Farabet // Proceedings of 2010 IEEE International Symposium on Circuitsс and Systems (ISCAS’10), IEEE, Paris, 2010, pp. 253–256. – doi: https://doi.org/10.1109/ISCAS.2010.5537907.
Podorozhniak A. Neural network approach for multispectral image processing / A. Podorozhniak, N. Liubchenko, O. Balenko, D. Zhuikov // 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET 2018) February 20 – 24, 2018. – Lviv-Slavske, Ukraine: proc. – Lviv, 2018. – P. 978-981. – doi: https://doi.org/10.1109/TCSET.2018.8336357.
Li H. Toward end-to-end car license plate detection and recognition with deep neural networks / H. Li, P. Wang, C. Shen // IEEE Transactions on Intelligent Transportation Systems. – 2019. – Vol.20, Is.3. – pp. 2351–2363. doi: https://doi.org/10.1109/TITS.2016.2639020.
Abdulla W. Mask R-CNN for object detection and instance segmentation on keras and tensorflow / W. Abdulla. – 2017. [Електронний ресурс] Режим доступу: https://github.com/matterport/Mask_RCNN.
Uijlings J.R.R. Selective Search for Object Recognition / J.R.R. Uijlings, K.E.A. van de Sande, T. Gevers, A.W.M. Smeulders // International Journal of Computer Vision. – 2013. – Is. 104. – pp. 154–171. doi: https://doi.org/10.1007/s11263-013-0620-5.
Girshick R. Region-Based Convolutional Networks for Accurate Object Detection and Segmentation / R. Girshick, J. Donahue, T. Darrell, J. Malik // IEEE Transactions on Pattern Analysis and Machine Intelligence. – 2016. – Vol. 38, Is. 1. – pp. 142–158. doi: https://doi.org/10.1109/TPAMI.2015.2437384.
Сватюк Д.Р. Застосування згорткових нейронних мереж для безпеки розпізнавання об'єктів у відеопотоці / Д.Р. Сватюк, О.Р. Сватюк, О.І. Белей // Кібербезпека: освіта, наука, техніка. – 2020. – No 4 (8). – С. 97-112. – doi: https://doi.org/10.28925/2663-4023.2020.8.97112.
Selmi Z. DELP-DAR system for license plate detection and recognition / Zied Selmi, Mohamed Ben Halima, UmapadaPal,M. Adel Alimi // Pattern Recognition Letters. – 2020 – Vol. 129, pp. 213-223. – doi: https://doi.org/10.1016/j.patrec.2019.11.007.
Распознавание номеров. Практическое пос. [Електронний ресурс] Режим доступу: https://habr.com/ru/post/432444/.
Томилов А.А. Обзор средств распознавания государственного регистрационного знака автомобиля / А.А. Томилов // Материалы X Всероссийской научно-практической конференции «Информационные технологии и автоматизацияуправления». – Омск: ОГТУ. – 2019. – C. 320-326.
Bulan O. Segmentation-and annotation-free license plate recognition with deep localization and failure identification /O. Bulan, V. Kozitsky, P. Ramesh; M. Shreve // IEEE Transactions on Intelligent Transportation Systems. – 2017. – Vol. 18, Is. 9. – pp. 2351–2363. doi: https://doi.org/10.1109/TITS.2016.2639020.
Контролируй парковку с SeeAuto. [Електронний ресурс] Режим до-ступу: https://ff-group.org/ контролируй-парковку-с-seeauto.