OPTIMIZATION OF ENERGY COSTS AND WATER CONSUMPTION IN AN AUTOMATED SYSTEM FOR MANAGING MOISTURE SUPPLY OF AGRICULTURAL CROPS

Authors

  • L. Lievi

DOI:

https://doi.org/10.26906/SUNZ.2019.4.017

Keywords:

intelligent decision-making support methods, optimal control of moisture security, multicriteriality, neofuzzy model of the control object, principle of the main criterion, maximin scheme

Abstract

The purpose of soil water management is to obtain a planned crop yield. Modern methods for the calculation and management of irrigation systems require the use of quantitative links between the soil water regime and crop yields. There are approaches for tying yields with total evaporation, moisture supply ratio, precipitation, the number of days in which plants will experience water stress. The most perfect are dynamic models of crop formation, which take into account all the main factors of plant activity. They are invariant, but for their practical application it is necessary to determine a large number of environmental factors and plant physiology, which are currently not enough studied, varying with time in species and varieties of plants. According to physiological properties, there are two types of cultures. The most perfect are dynamic models of crop formation, which take into account all the main factors of plant activity. They are invariant, but for their practical application it is necessary to determine a large number of environmental factors and plant physiology, which are currently not enough studied, varying with time in species and varieties of plants. According to physiological properties, there are two types of cultures. The first type includes crops that have pronounced critical periods, for example, cereals, for which insufficient water supply during flowering has an irreversible detrimental effect on crop yield; to the second, crops, for example, herbs that can tolerate drying of the soil for a short period and then completely restore the crop with optimal water consumption. In such models, each previous phase of plant development influences growth and development in the next phase. Intellectual methods of decision-making support in the conditions of multicriteriality in the tasks of optimal control of moisture supply of agricultural crops are applied. This approach allows to save water and energy resources while managing the moisture supply of agricultural crops without loss of yield.

Downloads

References

Лазарчук М.О. Основи гідромеліорацій. Осушення земель. / М.О. Лазарчук. - Рівне: НУВГП, 2006. - 300 с.

Комашинский В.И. Нейронные сети и их применение в системах управления и связи / В.И. Комашинский, Д.А. Смирнов. - Москва: Горячая линия - Телеком, 2003. - 93 с.

Mohammed, A. S. Optimal Forecast Model for Erbil Traffic Road Data. ZANCO Journal of Pure and Applied Sciences. 2017. Vol. 29, No 5. P. 137–145. DOI: https://doi.org/10.21271/ZJPAS.29.5.15

Коваленко А. А. Методи синтезу інформаційної та технічної структур системи управління об’єктом критичного застосування / А. А. Коваленко, Г. А. Кучук // Сучасні інформаційні системи. 2018. Т. 2, № 1. С. 22–27. DOI: https://doi.org/10.20998/2522-9052.2018.1.04

Свиридов А. C., Коваленко А. А., Кучук Г. А. Метод перерозподілу пропускної здатності критичної ділянки мережі на основі удосконалення ON/OFF-моделі трафіку. Сучасні інформаційні системи. 2018. Т. 2, № 2. С. 139–144. DOI: https://doi.org/10.20998/2522-9052.2018.2.24

Gomathi B, Karthikeyan N K, Saravana Balaji B, “Epsilon-Fuzzy Dominance Sort Based Composite Discrete Artificial Bee Colony optimization for Multi-Objective Cloud Task Scheduling Problem”, International Journal of Business Intelligence and Data Mining, Volume 13, Issue 1-3, 2018, pages 247-266, DOI: https://doi.org/10.1504/IJBIDM.2018.088435

Кучук, Г.А. Метод уменьшения времени передачи данных в беспроводной сети / Г.А. Кучук, А.С. Мохаммад, А.А. Коваленко // Системи управління, навігації та зв’язку. – К.: ЦНДІ НіУ, 2011. – Вип. 3 (19). – С. 209–213.

Kuchuk G., Kovalenko A., Komari I.E., Svyrydov A., Kharchenko V.. Improving big data centers energy efficiency: Traffic based model and method. Studies in Systems, Decision and Control, vol 171. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.). Springer Nature Switzerland AG, 2019. Pp. 161-183. DOI: http://doi.org/10.1007/978-3-030-00253-4_8

Amin Salih Mohammed, Saravana Balaji B., Hiwa Abdulkarim Mawlood. Conceptual analysis of Iris Recognition Systems. Advanced Information Systems. 2019. Vol. 3, No. 2. Р. 86-90. DOI : https://doi.org/10.20998/2522-9052.2019.2.15

Кучук Г. А. Метод параметрического управления передачей данных для модификации транспортных протоколов беспроводных сетей / Г.А. Кучук, А.С. Мохаммад, А.А. Коваленко // Системи обробки інформації. – 2011. – № 8(98). – С. 211-218.

Grebennik I.V. Interval estimation of alternatives in decision-making problems / I.V. Grebennik, T.E. Romanova, S.B. Shekhovtsov // Cybernetics and Systems Analysis, 45(2), 2009. - P. 253-262.

Гребеннік І.В. Методи прийняття рішень / О.Г. Наконечний, І.В. Гребеннік, Т.Є. Романова, А.Д. Тевяшев. - Харків: ХНУРЕ, 2016. - 132 с.

Published

2019-09-11

Most read articles by the same author(s)