BEHAVIOUR PREDICTION ANALYSIS OF WEBSITE USER

Authors

  • D. V. Grynov
  • D. S. Boiko
  • M. A. Holub

DOI:

https://doi.org/10.26906/SUNZ.2018.1.099

Keywords:

e-commerce, behavior models, social network, bank, marketing

Abstract

The article considers the main approaches of the process of forecasting the behavior of the web site's user. Examples of existing approaches and methods of forecasting are presented as well as the conclusions regarding the need to analyze existing andbuilding new behavioral models as well as make forecasts using these models in the course of doing business. The article describes methods of using social networks used to increase the number of clients of financial institutions, as well as to increasesatisfaction with the products of the bank and increasing their competitiveness. The article also determines the approach to thestrategy of using social media in the banking sector.

Downloads

Download data is not yet available.

References

Понятие электронной коммерции [Электронный ресурс] // Режим доступа к статье: http http://laboureconomics.ru/neweconomics/131-ecommerce.

US e-commenrce sales grow 15.6% in 2016 [Электронный ресурс] // Режим доступа к статье: https://www.digitalcommerce360.com/2017/02/17/. 1. The Wall Street Journal, March 13, 2014, [Электронный ресурс] // Режим доступа к статье: http://online.wsj.com/news/articles.

Sudheer K. Reddy. An Effective Methodology for Pattern Discovery in Web Usage Mining, International Journal of Computer Science and Information Technologies, Vol. 3 (2) 2012, рр. 3664-3667.

Vedpriya Dongre, Jadgish Raikwal, An Improved user Browsing Behavior Prediction Using Web Log Analysis, Internmational Journal of Advanced Research in Computer Engineering & Technology, Volum 4 Issue 5, May 2015, рр. 1838-1842с.

Наибольшая общая подпоследовательность [Электронный ресурс] // Режим доступа: https://en. wikipedia.org/wiki/Longest_common_subsequence_problem.

Gang Fang, Jia-Le Wang, Hong Ying, Jiang Xiong, A double algorithm of Web usage mining based on sequence number, IEEE 2009

A. Awad and Issa Khalil, Prediction of User’s Web- Browsing Behavior: Application of Markov Model, IEEE Transaction 2010.

Knowing What to Sell, When, and to Whom [Электронный ресурс] // Режим доступа: https://hbr.org/ 2006/03/knowing-what-to-sell-when-and-to-whom.

The Wall Street Journal, March 13, 2014, [Электронный ресурс] // Режим доступа к статье: http://online.wsj.com/news/a.rticles/SB1000142405270230354 6204579437692833009398

Официальный рейтинг банков Украины [Электронный ресурс] // Режим доступа к статье: http://banker.ua/officialrating/.

CREDIT SCORING BASED ON SOCIAL NETWORK DATA [Электронный ресурс] // Режим доступа: https://bijournal.hse.ru/data/2015/10/12/1076342406/2.pdf.

Social Media and the Workplace // Режим доступа к статье: http://www.pewinternet.org/2016/06/22/ social-media-and-the-workplace/

Рейтинг популярных в Украине сайтов за октябрь 2017 года [Электронный ресурс] // https://itc.ua/ news/reyting-populyarnyih-v-ukraine-saytov-v-oktyabre-2017- goda-sotsialnyie-seti-novostnyie-i-e-commerce-saytyi-vyiroslia- sanktsionnyie-resursyi-poteryali-ohvat/.

Harvard Business Review, 2010 [Электронный ресурс] // Режим доступа: http://www.sas.com/resources/whitepaper/wp_23348.pdf.

Published

2018-02-08