PACKING OF ELLIPSOIDS IN A CONVEX CONTAINER

Authors

  • Yu. Ye. Pankratova
  • O. M. Khlud
  • V. M. Patsuk

DOI:

https://doi.org/10.26906/SUNZ.2018.1.080

Keywords:

packing, ellipsoids, convex container, non-overlapping, containment, quasi-phi-functions, nonlinear optimisation

Abstract

We consider the problem of optimal packing of a given collection of unequal ellipsoids into an arbitrary convex container of minimal sizes. To describe non-overlapping, containment and distance constraints we derive phifunctions and quasi-phi-functions. We propose a relaxation approach related to constructing a phi-function forcontainment constraints to avoid equations of more than four degree. We formulate the packing problem in the formof a nonlinear programming problem and propose a solution method that allows us to search for local optimalpackings. We provide computational results illustrated with figures.

Downloads

Download data is not yet available.

References

Choi, Y.K. Elber. Continuous collision detection for ellipsoids. / Y.K. Choi, J.W. Chang, W. Wang // IEEE Transactions on Visualziation and Computer Graphics M. S. – 2009. 15(2):311-324,

Uhler, C. Packing Ellipsoids with Overlap / C. Uhler, S. J. Wright // SIAM Review, 55(4):671-706, 2013.

Donev, A. Improving the density of jammed disordered packings using ellipsoids / A. Donev, I. Cisse, D. Sachs, E. Variano, F. H. Stillinger, R. Connelly, S. Torquato, P. M. Chaikin // Science, 303(5660):990-993, 2004.

Bezrukov, A. Simulation and statistical snalysis of random packings of ellipsoids / A. Bezrukov, D. Stoyan // Particle & Particle Systems Characterization, 23:388-398, 2007.

Kallrath, J. Packing ellipsoids into volumeminimizing rectangular boxes / J. Kallrath // Journal of Global Optimisation, 67 (1-2), 151-185, 2017.

Chernov, N. Mathematical model and efficient algorithms for object packing problem. N. Chernov, Y. Stoyan, T. Romanova // Computational Geometry: Theory and Applications. 2010. 43(5). P. 535-553.

Stoyan, Y. Quasi-phi-functions and optimal packing of ellipses / Y. Stoyan, A. Pankratov, T. Romanova // Journal of Global Optimisation Journal of Global Optimisation, 65 (2), 283–307. 2016.

Stoyan, Yu.G. Covering a convex 3D polytope by a minimal number of congruent spheres / Yu.G. Stoyan, V.M. Patsuk // International Journal of Computer Mathematics Volume 91,- Issue 9 2010-2020, 2014.

Antoshkin, O. Construction of optimal wire sensor network for the area of complex shape. / O. Antoshkin, A. Pankratov // Eastern-Еuropean journal of enterprise technologies . – 2016. - № 6(4). – С. 45-53.

Birgin, E.G. Packing circles within ellipses / E.G. Birgin, L.H. Bustamante , H. F. Callisaya, J.M. Martínez // International 2013 Transactions in Operational Research 20, 365-389.

Downloads

Published

2018-02-08