PACKING OF ELLIPSOIDS IN A CONVEX CONTAINER
DOI:
https://doi.org/10.26906/SUNZ.2018.1.080Keywords:
packing, ellipsoids, convex container, non-overlapping, containment, quasi-phi-functions, nonlinear optimisationAbstract
We consider the problem of optimal packing of a given collection of unequal ellipsoids into an arbitrary convex container of minimal sizes. To describe non-overlapping, containment and distance constraints we derive phifunctions and quasi-phi-functions. We propose a relaxation approach related to constructing a phi-function forcontainment constraints to avoid equations of more than four degree. We formulate the packing problem in the formof a nonlinear programming problem and propose a solution method that allows us to search for local optimalpackings. We provide computational results illustrated with figures.Downloads
References
Choi, Y.K. Elber. Continuous collision detection for ellipsoids. / Y.K. Choi, J.W. Chang, W. Wang // IEEE Transactions on Visualziation and Computer Graphics M. S. – 2009. 15(2):311-324,
Uhler, C. Packing Ellipsoids with Overlap / C. Uhler, S. J. Wright // SIAM Review, 55(4):671-706, 2013.
Donev, A. Improving the density of jammed disordered packings using ellipsoids / A. Donev, I. Cisse, D. Sachs, E. Variano, F. H. Stillinger, R. Connelly, S. Torquato, P. M. Chaikin // Science, 303(5660):990-993, 2004.
Bezrukov, A. Simulation and statistical snalysis of random packings of ellipsoids / A. Bezrukov, D. Stoyan // Particle & Particle Systems Characterization, 23:388-398, 2007.
Kallrath, J. Packing ellipsoids into volumeminimizing rectangular boxes / J. Kallrath // Journal of Global Optimisation, 67 (1-2), 151-185, 2017.
Chernov, N. Mathematical model and efficient algorithms for object packing problem. N. Chernov, Y. Stoyan, T. Romanova // Computational Geometry: Theory and Applications. 2010. 43(5). P. 535-553.
Stoyan, Y. Quasi-phi-functions and optimal packing of ellipses / Y. Stoyan, A. Pankratov, T. Romanova // Journal of Global Optimisation Journal of Global Optimisation, 65 (2), 283–307. 2016.
Stoyan, Yu.G. Covering a convex 3D polytope by a minimal number of congruent spheres / Yu.G. Stoyan, V.M. Patsuk // International Journal of Computer Mathematics Volume 91,- Issue 9 2010-2020, 2014.
Antoshkin, O. Construction of optimal wire sensor network for the area of complex shape. / O. Antoshkin, A. Pankratov // Eastern-Еuropean journal of enterprise technologies . – 2016. - № 6(4). – С. 45-53.
Birgin, E.G. Packing circles within ellipses / E.G. Birgin, L.H. Bustamante , H. F. Callisaya, J.M. Martínez // International 2013 Transactions in Operational Research 20, 365-389.