AUTOMATED DEVELOPMENT OF CLASSIFIERS: ALGORITHMS AND SOFTWARE FOR GENERATING STRATEGIES OF DEPLOYMENT AND RELIABILITY ASSURANCE FOR UAV SWARM

Authors

  • Dmytro Terenyk
  • Vyacheslav Kharchenko

DOI:

https://doi.org/10.26906/SUNZ.2025.2.195

Keywords:

strategy classifier, UAV swarm deployment, reliability assurance, facet classification, decision-making automation

Abstract

Motivation. Ensuring reliability and autonomy of unmanned aerial vehicles (UAVs), as well as their swarms (UAV swarms), requires effective methods for developing and selecting deployment strategies, along with ensuring functional reliability under complex operational conditions. As the number of such strategies grows, appropriate tools for their development, classification, and selection become necessary. Object of research: processes of classification and automation in constructing classifiers for deployment and reliability assurance strategies (DRAS) for mobile systems, particularly UAV swarms. Purpose of the article. Development of a method for automating the process of creating and modifying (expanding and restructuring) classifiers of DRAS for mobile systems in various subject areas, demonstrating its application through the example of UAV swarms to enhance decision-making efficiency in conditions with a large number of domain-specific factors. Research results. An analysis of existing methods has been conducted; a concept and algorithms for automating classification and modeling processes of DRAS have been proposed; software has been developed and validated; and practical examples of its application have been presented, demonstrating its capability to support decision-making regarding the formation of sets and elimination of conflicting or practically unacceptable strategies. Conclusions. The primary scientific contribution of this study is the proposed and implemented automation method based on facet-hierarchical attribute descriptions and Cartesian models for generating possible strategy configurations. This approach can enhance the reliability and effectiveness of UAV swarm deployment under complex and dynamic conditions by generating complete and internally consistent sets for selecting DRAS.

Downloads

Download data is not yet available.

References

1. Terenyk D. Choosing strategies for deployment and ensuring the reliability of a UAV swarm to support communications in destruction conditions / Dmytro Terenyk, Vyacheslav Kharchenko // Innovative technologies and scientific solutions for industries. – 2024. – № 3 (29). – С. 91–103. – URL: https://doi.org/10.30837/2522-9818.2024.3.091.

2. Robotic-biological systems for detection and identification of explosive ordnance: concept, general structure, and models / Gennadiy Fedorenko [та ін.] // Radioelectronic and Computer Systems. – 2023. – № 2. – С. 143–159. – URL:https://doi.org/10.32620/reks.2023.2.12.

3. Methods and software tools for reliable operation of flying LiFi networks in destruction conditions / Herman Fesenko [та ін.] // Sensors. – 2024. – Т. 24, № 17. – С. 5707. – URL: https://doi.org/10.3390/s24175707.

4. Balalaieva O. Y. Фасетні класифікації електронних засобів навчального призначення / Olena Yu Balalaieva // Information technologies and learning tools. – 2013. – Т. 38, № 6. – С. 41–52. – URL:https://doi.org/10.33407/itlt.v38i6.926.

5. Перегуда О. М. Фасетна класифікація особливих випадків у польоті безпілотного літального апарату 1 класу / О. М. Перегуда, А. В. Родіонов, А. І. Бобунов // Наука і техніка Повітряних Сил Збройних Сил України. – 2022. – № 1(46). – С. 85–91. – URL: https://doi.org/10.30748/nitps.2022.46.12.

6. Жигайло О. М. Кластерний аналіз даних в автоматизованих системах простежуваності / О. М. Жигайло, В. В. Борис // Automation of technological and business processes. – 2018. – Т. 10, № 1. – URL:https://doi.org/10.15673/atbp.v10i1.879.

7. Тереник Д. Класифікація стратегій забезпечення надійності літаючої мережі для забезпечення комунікацій в умовах руйнувань / Дмитро Тереник, Вячеслав Харченко // Measuring and computing devices in technological processes. – 2024. – № 2. – С. 357–370. – URL: https://doi.org/10.31891/2219-9365-2024-78-41.

8. Phase combination for reliability analysis of dynamic k-out-of-n Phase-AND mission systems / Chaonan Wang [та ін.] // Reliability Engineering & System Safety – 2025. – С. 110817. – URL: https://doi.org/10.1016/j.ress.2025.110817.

9. Wei Y. Fleet service reliability analysis of self-service systems subject to failure-induced demand switching and a twodimensional inspection and maintenance policy / Yian Wei, Yao Cheng, Haitao Liao // IEEE Transactions on Automation Science and Engineering. – 2024. – С. 1–16. – URL: https://doi.org/10.1109/tase.2024.3516049.

10. Ruiz C. Generalized functional mixed models for accelerated degradation-based reliability analysis / Cesar Ruiz, Haitao Liao, Edward A. Pohl // IEEE Transactions on Reliability. – 2024. – С. 1–12. – URL:https://doi.org/10.1109/tr.2024.3505077.

11. Dui H. Attack strategies and reliability analysis of Wireless Mesh Networks considering cascading failures / Hongyan Dui, Jiabao Zhai, Xiuwen Fu // Reliability Engineering & System Safety. – 2025. – С. 110832. – URL:https://doi.org/10.1016/j.ress.2025.110832.

12. Kucherenko O. I. Classification of methods and algorithms for constructing UAV routes / O. I. Kucherenko, T. А. Vakaliuk // Scientific notes of Taurida national V.I. Vernadsky university. Series: Technical sciences. – 2024. – Т. 1, № 3. – С. 111–116. – URL: https://doi.org/10.32782/2663-5941/2024.3.1/18.

Published

2025-06-19