ANALYSIS OF METHODS FOR DETECTING UNMANNED AERIAL VEHICLES

Authors

  • O. Leha
  • V. Martovytskyi
  • I. Severin

DOI:

https://doi.org/10.26906/SUNZ.2025.2.013

Keywords:

unmanned aerial vehicle, UAV, detection, RF Spectrum Analysis, Real-Time Drone Monitoring, UAV classification

Abstract

In the modern era of increasing use of unmanned aerial vehicles (UAVs) in civilian, commercial, and military sectors, the issue of UAV detection has become critically important. Moreover, the development of artificial intelligence and machine learning algorithms opens new opportunities for improving identification accuracy and reducing false alarms. The use of advanced data processing methods allows detection systems to adapt to changing conditions and enhance their effectiveness in real-world environments. Therefore, research on UAV detection methods is relevant not only from a scientific perspective but also from a practical standpoint, as its findings can be applied to ensure security in urban areas, combat zones, and other critical fields. An unmanned aerial vehicle is an aircraft designed to operate without a pilot on board, with flight control carried out either by a pre-programmed system or via a remote control station located outside the aircraft. UAV detection is the process of locating and, in some cases, identifying an unmanned aerial vehicle. This article examines the primary UAV detection methods, analyzing their advantages and limitations. The study has demonstrated that none of the reviewed detection methods is universal. Each method has its own strengths and weaknesses, which can significantly impact the effectiveness of the system in real-world conditions. Based on the obtained results, promising directions for further research include: development of combined detection systems, application of deep learning methods, exploration of new physical principles for UAV detection. The results of this study lay the foundation for further advancement in UAV detection technologies, contributing to the development of more effective and adaptive security solutions.

Downloads

Download data is not yet available.

References

1. Chamola, V.; Kotesh, P.; Agarwal, A.; Naren; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Netw. 2021, 111, 102324. doi: https://doi.org/10.1016/j.adhoc.2020.102324

2. Li, S.; Chai, Y.; Guo, M.; Liu, Y. Research on Detection Method of UAV Based on micro-Doppler Effect. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 3118–3122. doi: 10.23919/CCC50068.2020.9189414.

3. Pappu, C.S.; Beal, A.N.; Flores, B.C. Chaos based frequency modulation for joint monostatic and bistatic radarcommunication systems. Remote Sens. 2021, 13, 4113. doi: https://doi.org/10.3390/rs13204113

4. Abd, M.H.; Al-Suhail, G.A.; Tahir, F.R.; Ali Ali, A.M.; Abbood, H.A.; Dashtipour, K.; Jamal, S.S.; Ahmad, J. Synchronization of monostatic radar using a time-delayed chaos-based FM waveform. Remote Sens. 2022, 14, 1984. doi: https://doi.org/10.3390/rs14091984

5. Mehta, S.; Rastegari, M.; Caspi, A.; Shapiro, L.; Hajishirzi, H. Espnet: Efficient spatial pyramid of dilated convolutions for semantic segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018, pp. 552–568. doi: https://doi.org/10.48550/arXiv.1803.06815

6. Shi, X.; Yang, C.; Xie,W.; Liang, C.; Shi, Z.; Chen, J. Anti-Drone System with Multiple Surveillance Technologies: Architecture, Implementation, and Challenges. IEEE Commun. Mag. 2018, 56, 68–74. doi: https://doi.org/10.1109/MCOM.2018.1700430

7. Zhang, J.; Liu, M.; Zhao, N.; Chen, Y.; Yang, Q.; Ding, Z. Spectrum and energy efficient multi-antenna spectrum sensing for green UAV communication. Digital Commun. Netw. 2022, 9, 846–855. doi: https://doi.org/10.1016/j.dcan.2022.09.017

8. Nie, W.; Han, Z.C.; Zhou, M.; Xie, L.B.; Jiang, Q. UAV detection and identification based on WiFi signal and RF fingerprint. IEEE Sensors J. 2021, 21, 13540–13550. doi: https://doi.org/10.1109/JSEN.2021.3068444

9. Nie, W.; Han, Z.C.; Li, Y.; He, W.; Xie, L.B.; Yang, X.L.; Zhou, M. UAV detection and localization based on multidimensional signal features. IEEE Sensors J. 2021, 22, 5150–5162. doi: https://doi.org/10.1109/JSEN.2021.3105229

10. Mo, Y.; Huang, J.; Qian, G. UAV Tracking by Identification Using Deep Convolutional Neural Network. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Chengdu, China, 9–12 December 2022; pp. 1887–1892. doi: https://doi.org/10.1109/ICCC56324.2022.10065721

11. Swinney, C.J.; Woods, J.C. Low-Cost Raspberry-Pi-Based UAS Detection and Classification System Using Machine Learning. Aerospace 2022, 9, 738. doi: https://doi.org/10.3390/aerospace9120738

12. Lu, S.; Wang, W.; Zhang, M.; Li, B.; Han, Y.; Sun, D. Detect the Video Recording Act of UAV through Spectrum Recognition. In Proceedings of the 2022 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), Dalian, China, 24–26 June 2022; pp. 559–564. doi: https://doi.org/10.1109/ICAICA54878.2022.9844471

13. He, Z.; Huang, J.; Qian, G. UAV Detection and Identification Based on Radio Frequency Using Transfer Learning. In Proceedings of the 2022 IEEE 8th International Conference on Computer and Communications (ICCC), Virtual, 9–12 December 2022; pp. 1812–1817. doi: https://doi.org/10.1109/ICCC56324.2022.10065628

14. Li, T.; Hong, Z.; Cai, Q.; Yu, L.; Wen, Z.; Yang, R. Bissiam: Bispectrum siamese network based contrastive learning for uav anomaly detection. IEEE Trans. Knowl. Data Eng. 2021. doi: https://doi.org/10.1109/TKDE.2021.3118727

15. Schweinhart, B. Persistent homology and the upper box dimension. Discret. Comput. Geom. 2021, 65, 331–364. doi: https://doi.org/10.1007/s00454-019-00145-3

16. Higuchi, T. Approach to an irregular time series on the basis of the fractal theory. Phys. D Nonlinear Phenom. 1988, 31, 277–283. doi: https://doi.org/10.1016/0167-2789(88)90081-4

17. Zhang, X.D.; Shi, Y.; Bao, Z. A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Process. 2001, 49, 1875–1885. doi: https://doi.org/10.1109/78.942617

18. Tugnait, J.K. Detection of non-Gaussian signals using integrated polyspectrum. IEEE Trans. Signal Process. 1994, 42, 3137–3149. doi: https://doi.org/10.1109/78.330373

19. Yao, Y.; Yu, L.; Chen, Y. Specific Emitter Identification Based on Square Integral Bispectrum Features. In Proc. of the 2020 IEEE 20th Int. Conf. on Comm. Techn., Nanning, China, 2020; pp. 1311–1314. doi: https://doi.org/10.1109/ICCT50939.2020.9295681

20. Al-Sa’d, M.F.; Al-Ali, A.; Mohamed, A.; Khattab, T.; Erbad, A. RF-based drone detection and identification using deep learning approaches: An initiative towards a large open source drone database. Future Gener. Comput. Syst. 2019, 100, 86–97. doi: https://doi.org/10.1016/j.future.2019.05.007

21. Mo, Y.; Huang, J.; Qian, G. Deep Learning Approach to UAV Detection and Classification by Using Compressively Sensed RF Signal. Sensors 2022, 22, 3072. doi: https://doi.org/10.3390/s22083072

22. Unlu, E.; Zenou, E.; Riviere, N.; Dupouy, P.E. Deep learning-based strategies for the detection and tracking of drones using several cameras. IPSJ Trans. Comput. Vis. Appl. 2019, 11, 7. doi: https://doi.org/10.1186/s41074-019-0059-x

23. Fang, H.; Xia, M.; Zhou, G.; Chang, Y.; Yan, L. Infrared small UAV target detection based on residual image prediction via global and local dilated residual networks. IEEE Geosci. Remote. Sens. Lett. 2021, 19, 7002305 .

24. Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. doi: https://doi.org/10.1109/LGRS.2021.3085495

25. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the CVPR’05, San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. doi: https://doi.org/10.1109/CVPR.2005.177

26. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the CVPR, Columbus, OH, USA, 23–28 June 2014; pp. 580–587. url:https://clgiles.ist.psu.edu/IST597/materials/papers-cnn/rcnn.pdf

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. doi: https://doi.org/10.1109/TPAMI.2015.2389824

28. Girshick, R. Fast r-cnn. In Proceedings of the ICCV, Santiago, Chile, 13–16 December 2015; pp. 1440–1448.

29. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. doi: https://doi.org/10.48550/arXiv.1506.01497

30. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the CVPR, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. url: https://openaccess.thecvf.com/content_cvpr_2016/html/Redmon_You_Only_Look_CVPR_2016_paper.html

31. Ajakwe, S.O.; Ihekoronye, V.U.; Kim, D.S.; Lee, J.M. DRONET: Multi-Tasking Framework for Real-Time Industrial Facility Aerial Surveillance and Safety. Drones 2022, 6, 46. doi: https://doi.org/10.3390/drones6020046

32. Wang, J.; Hongjun, W.; Liu, J.; Zhou, R.; Chen, C.; Liu, C. Fast and Accurate Detection of UAV Objects Based on MobileYolo Network. In Proceedings of the 2022 14th International Conference on Wireless Communications and Signal Processing (WCSP), Virtually, 1–3 November 2022; pp. 1–5. doi: https://doi.org/10.1109/WCSP55476.2022.10039216

33. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of the ECCV, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37. doi: https://doi.org/10.1007/978-3-319-46448-0_2

34. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the ICCV, Venice, Italy, 22–29 October 2017; pp. 2980–2988. doi: https://doi.org/10.48550/arXiv.1708.02002

35. Al-Emadi, S.; Al-Ali, A.; Mohammad, A.; Al-Ali, A. Audio based drone detection and identification using deep learning. In Proceedings of the 2019 15th InternationalWireless Communications & Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 459–464. doi: https://doi.org/10.1109/IWCMC.2019.8766732

36. Yan, X.; Fu, T.; Lin, H.; Xuan, F.; Huang, Y.; Cao, Y.; Hu, H.; Liu, P. UAV Detection and Tracking in Urban Environments Using Passive Sensors: A Survey. Appl. Sci. 2023, 13, 11320. doi: https://doi.org/10.3390/app132011320

37. Dong, Q.; Liu, Y.; Liu, X. Drone sound detection system based on feature result-level fusion using deep learning. Multimed. Tools Appl. 2023, 82, 149–171. doi: https://doi.org/10.1007/s11042-022-12964-3

38. Svanström, F.; Alonso-Fernandez, F.; Englund, C. Drone Detection and Tracking in Real-Time by Fusion of Different Sensing Modalities. Drones 2022, 6, 317. doi: https://doi.org/10.3390/drones6110317

39. Uddin, Z.; Qamar, A.; Alharbi, A.G.; Orakzai, F.A.; Ahmad, A. Detection of Multiple Drones in a Time-Varying Scenario Using Acoustic Signals. Sustainability 2022, 14, 4041. doi: https://doi.org/10.3390/su14074041

40. Jamil, S.; Rahman, M.; Ullah, A.; Badnava, S.; Forsat, M.; Mirjavadi, S.S. Malicious UAV detection using integrated audio and visual features for public safety applications. Sensors 2020, 20, 3923. doi: https://doi.org/10.3390/s20143923

41. Guo, J.; Ahmad, I.; Chang, K. Classification, positioning, and tracking of drones by HMM using acoustic circular microphone array beamforming. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–19. doi: https://doi.org/10.1186/s13638-019-1632-9

42. Gupta, H.; Gupta, D. LPC and LPCC method of feature extraction in Speech Recognition System. In Proceedings of the 2016 6th International Conference-Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; pp. 498–502. doi: https://doi.org/10.1109/CONFLUENCE.2016.7508171

43. Uddin, Z.; Altaf, M.; Bilal, M.; Nkenyereye, L.; Bashir, A.K. Amateur Drones Detection: A machine learning approach utilizing the acoustic signals in the presence of strong interference. Comput. Commun. 2020, 154, 236–245. doi: https://doi.org/10.1016/j.comcom.2020.02.065

44. Aydın, ˙I.; Kızılay, E. Development of a new Light-Weight Convolutional Neural Network for acoustic-based amateur drone detection. Appl. Acoust. 2022, 193, 108773. doi: https://doi.org/10.1016/j.apacoust.2022.108773

Downloads

Published

2025-06-19

Issue

Section

Navigation and Geoinformation systems