Increasing the interference immunity of mobile digital combined microwave radio engineering systems
DOI:
https://doi.org/10.26906/SUNZ.2025.1.196-200Keywords:
pseudo-random frequency hopping, phase-shift keyed signal, wideband signal, spread spectrum systemAbstract
In the article evaluates the interference immunity of the joint system pseudo-random frequency hopping – wideband signals. It is known that mobile digital combined microwave radio engineering systems use phase-shift keyed wideband
signals and pseudo-random frequency hopping. The mobile digital combined troposcatter-space system also uses phase-shift keyed
wideband signals and pseudo-random frequency hopping. The use of a joint system of pseudo-random frequency hopping - wideband signals is due to the requirement for stable operation of any radio engineering system in the conditions of a complex interference environment created by enemy radio suppression stations. The article analyzes the relevant literature. The schemes of the
transmitter and receiver for the formation and reception of a joint pseudo-random frequency hopping - a wideband signal are given.
The peculiarity of these schemes is that the transmitting and receiving microwave paths are implemented on rectangular waveguides
partially filled by a dielectric. The influence of barrage noise interference on the interference immunity of such a receiver is investigated in the article. The probability of error per bit for QPSK modulation under the influence of white Gaussian noise and barrage
interference is shown. The expression for the probability of error per bit is written through the Crump function. The probability of error
per bit is found under the conditions that the interference spectrum exceeds the spectrum of the wideband signal and under the condition
that the interference spectrum is narrower than the spectrum of the wideband signal. The article calculates the dependences of the
probability of error per bit on the ratio of the signal power to the total power of noise and interference for different values of the spectral
expansion coefficients for the cases of using only pseudo-random frequency hopping, only a wideband signal and joint pseudo-random
frequency hopping – wideband signal. It is concluded that taking into account the presence of a protection device in the receiver of
a wideband signal, under conditions of interference in part of the band, the noise immunity of the joint system is higher than the
interference immunity of a pseudo-random frequency hopping system or a system using a wideband signal.
Downloads
References
1. Патент №112217 Україна. C2. Мобільна цифрова тропосферно-радіорелейна станція / Почерняєв В.М., Повхліб В.С.; заявл. 12.09.2014; опубл. 10.08.2016 // Бюл.№ 15. https://iprop-ua.com/?qi=112217
2. Патент №120288 Україна. Мобільна цифрова тропосферно-радіорелейна станція / Почерняєв В.М., Повхліб В.С., Зайченко В.В.; заявл. 29.08.2017; опублік. 11.11.2019// Бюл.№21. https://iprop-ua.com/?qi=120288
3. Патент №126203 Україна. C2. Мобільна цифрова тропосферно-космічна станція/ Почерняєв В.М., Повхліб В.С.; заявл. 17.01.2020; опубл. 10.08.2020 https://iprop-ua.com/?qi=126203
4. Yaohui Hu, Shuping Han, Heng Zhao, Yubo Han, Jingfeng Xu, Gang Yang. Extension of the Covert Performance Evaluation System for Underwater Spread Spectrum Communication//2023 3rd International Conference on Electronic Information Engineering and Computer (EIECT), 17-19 November 2023, Shenzhen, China, https://doi.org/10.1109/EIECT60552.2023.10442269 DOI: https://doi.org/10.1109/EIECT60552.2023.10442269
5. Xiaopeng Tan, Shaojing Su, Xiaoyong Sun. Research on Narrowband Interference Suppression Technology of UAV Network Based on Spread Spectrum Communication//2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS), 20-22 March 2020, Dalian, China, https://doi.org/10.1109/ICAIIS49377.2020.9194891 DOI: https://doi.org/10.1109/ICAIIS49377.2020.9194891
6. D. S. Chirov, O. G. Chertova, E. M. Lobov, M. V. Bazylev. Construction of a Communication Channel with UAVs Based on Direct Sequence Spread Spectrum Signals//2024 Systems of Signals Generating and Processing in the Field of on Board Communications, 16 April 2024, https://doi.org/10.1109/IEEECONF60226.2024.10496771 DOI: https://doi.org/10.1109/IEEECONF60226.2024.10496771
7. Adrian Tang, Yanghyo Kim, Gabriel Virbila, M.-C. Frank Chang. A 205 GHz Serial Direct-Sequence Spread Spectrum (DS/SS) Radar System-on-Chip in 28nm CMOS//2019 IEEE MTT-S International Microwave Symposium (IMS), 25 July 2019, Boston, MA, USA, https://doi.org/10.1109/MWSYM.2019.8700823 DOI: https://doi.org/10.1109/MWSYM.2019.8700823
8. Tarak Arbi, Benoit Geller, Oudomsack Pierre Pasquero. Direct-Sequence Spread Spectrum with Signal Space Diversity for High Resistance to Jamming//MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM), 30 December 2021, San Diego, CA, USA, https://doi.org/10.1109/MILCOM52596.2021.9652967 DOI: https://doi.org/10.1109/MILCOM52596.2021.9652967
9. Kheriya. F. Alhaddar, Hager Bishi, Somya. H. Alshepane, Mohamed M. Elfituri. Direct Sequence Spread Spectrum Technique for Multi-User Communication System Application//2021 IEEE 1st International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering MI-STA, 29 June 2021, Tripoli, Libya, https://doi.org/10.1109/MI-STA52233.2021.9464450 DOI: https://doi.org/10.1109/MI-STA52233.2021.9464450
10. Daniel Alexandru Visan, Mariana Jurian, Ioan Lita, Laurentiu Mihai Ionescu, Alin Gheorghita Mazare. Direct Sequence Spread Spectrum Communication Module for Efficient Wireless Sensor Networks//2019 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 23 April 2020, Pitesti, Romania, https://doi.org/10.1109/ECAI46879.2019.9041979 DOI: https://doi.org/10.1109/ECAI46879.2019.9041979
11. Fengyuan Zhu, Juhong Tong. Simulation of Spread Spectrum Communication System Based on MATLAB//2024 4th International Conference on Neural Networks, Information and Communication Engineering (NNICE), 19-21 January 2024, Guangzhou, China, https://doi.org/10.1109/NNICE61279.2024.10498676 DOI: https://doi.org/10.1109/NNICE61279.2024.10498676
12. Olanrewaju Bola Wojuola. Mathematical Model for Bit-error-rate of a Spread-Spectrum System//2019 21st International Conference on Advanced Communication Technology (ICACT), 02 May 2019, PyeongChang, Korea, https://doi.org/10.23919/ICACT.2019.8701934 DOI: https://doi.org/10.23919/ICACT.2019.8701934
13. Wenzhun Huang, Shanwen Zhang, Robert Hao Yan. Novel Spread Spectrum Communication Theory and the Anti-jamming Applications//2021 6th International Conference on Inventive Computation Technologies (ICICT), 26 February 2021, Coimbatore, India, https://doi.org/10.1109/ICICT50816.2021.9358748 DOI: https://doi.org/10.1109/ICICT50816.2021.9358748
14. I. V. Malygin, A. S. Luchinin, V. A. Surgutskaya, Yu. V. Kozlov. One of the Ways to Protect a Spread Spectrum Communication System from such Structural Interference//2020 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), 13 August 2020, https://doi.org/10.1109/SYNCHROINFO49631.2020.9166090 DOI: https://doi.org/10.1109/SYNCHROINFO49631.2020.9166090
15. Guomin Tang, Lidong Zhu, Qi Wu, Qihui He, Le Yu. A Hybrid Spread Spectrum Communication Method Based on Chaotic Sequence//2021 International Symposium on Networks, Computers and Communications (ISNCC), 25 November 2021, Dubai, United Arab Emirates, https://doi.org/10.1109/ISNCC52172.2021.9615817 DOI: https://doi.org/10.1109/ISNCC52172.2021.9615817
16. Md Rakibur Rahman, Satheesh Bojja- Venkatakrishnan, Elias A. Alwan, John L. Volakis. Spread Spectrum Techniques for Interference Mitigation in Large Bandwidth//2019 IEEE International Symposium on Antennas and Propagation and USNCURSI Radio Science Meeting, 31 October 2019, Atlanta, GA, USA, https://doi.org/10.1109/APUSNCURSINRSM.2019.8888648 DOI: https://doi.org/10.1109/APUSNCURSINRSM.2019.8888648
17. Jingtian Xu, Zhixuan Zhang. FPGA Spread Spectrum Communication Method Based on M Sequence// 2021 3rd International Conference on Intelligent Control, Measurement and Signal Processing and Intelligent Oil Field (ICMSP), 20 August 2021, Xi'an, China, https://doi.org/10.1109/ICMSP53480.2021.9513383 DOI: https://doi.org/10.1109/ICMSP53480.2021.9513383
18. Avinash Kumar, Ye Zhu. Extending Direct Sequence Spread-Spectrum for Secure Communication//2021 International Symposium on Networks, Computers and Communications (ISNCC), 25 November 2021, Dubai, United Arab Emirates, https://doi.org/10.1109/ISNCC52172.2021.9615783 DOI: https://doi.org/10.1109/ISNCC52172.2021.9615783
19. Почерняев В.Н. Устройства на частично заполненных диэлектриком волноводах. Киев: УКНИПСК, 2000. 224с.
20. Почерняев В.Н., Цибизов К.Н. Теория сложных волноводов. Науовий світ, 2003. 223с.
21. Pochernyaev V., Syvkova N. Broadband switch on partially filled by dielectric rectangular waveguide». The scientific heritage, 2021. № 60 (60). с. 49-52. https://doi.org/10.24412/9215-0365-2021-60-1-49-52
22. Почерняєв В.М., Сивкова Н.М. Пристрій управління потужністю НВЧ на частково заповненому діелектриком прямокутному хвилеводі. Інфокомунікаційні та інформаційні технології, 2021. №1 (01). с.81-89. https://visnicct.uu.edu.ua/index.php/icct/article/view/28/7
23. Почерняєв В.М., Сивкова Н.М. Фільтр на хвилеводних трійниках, що частково заповнені діелектриком. The scientific heritage, 2021. № 75 (75). с. 42-47.
24. Почерняєв В.М., Магомедова М.С. Сивкова Н.М. Пристрій регулювання потужністю НВЧ на частково заповнених діелектриком прямокутних хвилеводах. Інфокомунікаційні та інформаційні технології, 2021. №2 (02). с. 161-171. https://visn-icct.uu.edu.ua/index.php/icct/article/view/49/36 DOI: https://doi.org/10.36994/2788-5518-2021-02-02-11
25. Почерняєв В.М., Сивкова Н.М. Перемикач на хвилеводному трійнику, частково заповнений діелектриком. The scientific heritage, 2022. № 84 (84). с.53-57. DOI:10.24412/9215-0365-2022-84-1-53-57
26. Почерняєв В.М., Магомедова М.С. Сивкова Н.М. Обмежувач потужності НВЧ на частково заповнених діелектриком прямокутних хвилеводах. Інфокомунікаційні та комп’ютерні технології, 2022. №1(03). С.90-101. https://doi.org/10.36994/2788-5518-2022-01-03-06 DOI: https://doi.org/10.36994/2788-5518-2022-01-03-06
27. Pochernyaev V., Syvkova N., Mahomedova M. Switch-filter on a rectangular waveguide partially filled by dielectric. Informatyka, Automatyka, Pomiary W Gospodarce I Ochronie Środowiska, 2022. №12(3). р.8-11. https://ph.pollub.pl/index.php/iapgos/article/view/3052/2728 DOI: https://doi.org/10.35784/iapgos.3052
28. Почерняєв В.М., Магомедова М.С., Сивкова Н.М. Фазо-частотний пристрій на частково заповненому діелектриком прямокутному хвилеводі. Системи управління, навігації та зв’язку, 2022. №4 (70). С.158-161 https://doi.org/10.26906/SUNZ.2022.4.158 DOI: https://doi.org/10.26906/SUNZ.2022.4.158
29. Pochernyaev V., Mahomedova M., Syvkova N. Комутаційний фазообертач на частково заповненому діелектриком прямокутному хвилеводі. Системи управління, навігації та зв’язку. Полтава: ПНТУ, 2023. Т. 1 (71). С. 171-176. https://doi.org/10.26906/SUNZ.2023.1.171 DOI: https://doi.org/10.26906/SUNZ.2023.1.171
30. V Pochernyaev, M Mahomedova, N Syvkova. Плоска фазована антенна решітка для мобільних цифрових станцій зв'язку «точка-багатоточка» НВЧ діапазону. Системи управління, навігації та зв'язку, 2024. №2, С.187-190. https://doi.org/10.26906/SUNZ.2024.2.187 DOI: https://doi.org/10.26906/SUNZ.2024.2.187
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.