МОБІЛЬНІ ЦИФРОВІ ТРОПОСФЕРНІ СТАНЦІЇ З КОМБІНУВАННЯМ ПРОСТОРОВО-РОЗНЕСЕНИХ СИГНАЛІВ
Ключові слова:
просторове – рознесення сигналів, мобільні цифрові тропосферні станції, автовибір, лінійне складання, оптимальне складання, частково заповнений діалектиком хвилевод
Анотація
В статті досліджується мобільні цифрові тропосферні станції та мобільні комбіновані цифрові радіотехнічні станції, які включать системи просторового рознесення сигналів. Це відомий прийом підвищення стійкості зв'язку та отримання необхідних якісних показників при передачі сигналів в багатопроменевих каналах. Методи прийому просторово-рознесених сигналів можна класифікувати як рознесений прийом із комбінуванням сигналів за надвисокою частотою, проміжною частотою, основною робочою смугою частот. Методи комбінування просторово-рознесених сигналів: автовибір; лінійне складання; оптимальне складання. В статті детально досліджено схему складання сигналів в лінійному тракті до демодулятора і після демодулятора. Результати дослідження показали, що кращі можливості у лінійного складання. При цьому відмічено, що важливу роль грають методи автофазування: автоматичне керування фазами гетеродинних НВЧ сигналів та автоматичне фазування складаних сигналів по проміжній частоті. При оптимальному складанні теоретично виходить найбільший виграш щодо відношення сигнал/шум. Лінійне складання порівняно з оптимальним дає менший виграш щодо сигнал/шум на виході пристрою комбінування всього на 1 дБ. Тому, для вузлових та високошвидкісних мобільних цифрових тропосферних станцій рекомендується застосування лінійного складання як методу комбінування рознесених сигналів. В роботі проаналізовано декілька структурних схем приймального тракту для просторово-рознесених сигналів з комбінуванням по проміжної частоти в мобільних цифрових тропосферних станціях. Відмітимо, що прийом із просторовим рознесенням антен продовжує залишатися основним засобом підвищення стійкості зв'язку на тропосферних лініях зв'язку під час передачі цифрових сигналів. В статті розглянуто методи прийому і комбінування просторово-рознесених сигналів, у яких немає перерв зв'язку через перемикання. Лінійне складання, знаходить широке застосування в сучасних мобільних цифрових тропосферних і комбінованих радіотехнічних системах, складовими яких є тропосферна компонента.Завантаження
Дані про завантаження поки що недоступні.
Посилання
1. Патент №112217 Україна. C2. Мобільна цифрова тропосферно-радіорелейна станція / Почерняєв В.М., Повхліб В.С.; заявл. 12.09.2014; опубл. 10.08.2016 // Бюл.№ 15. https://iprop-ua.com/?qi=112217.
2. Патент №120288 Україна. Мобільна цифрова тропосферно-радіорелейна станція / Почерняєв В.М., Повхліб В.С., Зайченко В.В.; заявл. 29.08.2017; опублік. 11.11.2019// Бюл.№21. https://iprop-ua.com/?qi=120288.
3. Патент №127524 Україна. C2. Мобільна цифрова тропосферно-іоносферна станція/ Почерняєв В.М., Сивкова Н.М., Повхліб В.С., Магомедова М.С. // заяв.07.07.2021; опублік. 20.09.2023. https://iprop-ua.com/?qi=127524.
4. Почерняев В.М. Устройства на частично заполненных диэлектриком волноводах/ В.М. Почерняев. – Киев: УКНИПСК, 2000. – 224с.
5. Почерняев В.Н., Цибизов К.Н. Теория сложных волноводов, Науковий світ, 2003, с.223.
6. Weimin Kang. A Probabilistic Shaping Scheme for MIMO Systems with Signal Space Diversity. IEEE Wireless Communications and Networking Conference, USA. 10-13 April 2022.
7. Xiang Gao, Zhanji Wu, Sheng He, Yongtao Shi, Xiaoping Zhou. Enhanced MIMO cooperative communication based on signal space diversity. 9th Int. Conference on Communications and Networking in China, China. 14-16 August 2014.
8. Ghasemzadeh P., Hempel M., Banerjee S., Sharif H. A Spatial-Diversity MIMO Dataset for RF Signal Processing Research. IEEE Transactions on Instrumentation and Measurement. 2021. Vol. 70. pp. 1-10.
9. Aekkarat Lorphichian, Auttapon Pomsathit, Jintana Nakasuwan, Thanupong Srikalsin, Chawalit Benjangkaprasert. Systems. Korea. 14-17 October 2008.
10. Chang-Soon Choi, Yozo Shoji, Hiroyo Ogawa. Analysis of receiver space diversity gain for millimeter-wave self-heterodyne transmission techniques under two-path channel environments. IEEE Radio and Wireless Symposium, USA. January 2007.
11. Mehmet Akif Kurt, Ali Tugberk Dogukan, Ertugrul Basar. Spatial Modulation Using Signal Space Diversity. IEEE Communications Letters. 11 January 2023. рр.1020 – 1024.
12. Tingting Song, Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Elaine Wong, Kamal Alameh. Demonstration of Optical Wireless Communications using Spatial Modulation with Signal Space Diversity. IEEE Photonics Conference (IPC). USA. 29 September 2019 - 03 October 2019.
13. Lagunas M. A., Perez Neira A. I., Amin M. G., Vidal J. Spatial processing for frequency diversity schemes. IEEE Transactions on Signal Processing, Feb. 2000. Vol. 48. No. 2. pp. 353-362. https://doi.org/10.1109/78.823963.
14. Kurt M. A., Dogukan A. T., Basar E. Spatial Modulation Using Signal Space Diversity. IEEE Communications Letters. March 2023. Vol. 27. No. 3. pp. 1020-1024. https://doi.org/10.1109/LCOMM.2023.3236025.
15. Giri, R.K., Patnaik, B. BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma–gamma channel model. Opt Quant Electron. 2018. No. 50. p.231. https://doi.org/10.1007/s11082-018-1499-8.
16. Kim S.-J., Han S.-K. Power Efficiency Analysis of Spatial Diversity Based Vertical FSO Links With Pointing Error in Multiple Beam Transmissions. IEEE Access, 2022. Vol. 10. pp. 25-31. https://doi.org/10.1109/ACCESS.2022.3228528.
17. Gorbunov S., Rashich A. Spatial receive diversity for SEFDM based system. 42nd International Conference on Telecommunications and Signal Processing, Budapest. 2019. pp. 265-268. https://doi.org/ 10.1109/TSP.2019.8769085.
18. Jha P.K., Kachare N., Kalyani K., Kumar D.S. Performance analysis of FSO using relays and spatial diversity under lognormal fading channel. 4th International Conference on Electrical Energy Systems, India. 2018. pp. 121-125. https://doi.org/10.1109/ICEES.2018.8442405.
19. Zhao X., Yu L., He F. Wide Range Swath SAR Imaging Method Based On Coherent Frequency Diverse Array Radar. 7th International Conference on Signal and Image Processing, Suzhou, China. 2022. pp. 576-580. https://doi.org/10.1109/ICSIP55141.2022.9886965.
20. Carvajal Mora H., Orozco N.G., Chiliguano P.T., De Almeida C. Enabling Signal Space Diversity for MU-MIMO/OFDMA https://doi.org/10.1109/ACCESS.2019.2934638.
21. Salucci M., Gelmini A., Poli L., Oliveri G., Massa A. Progressive compressive sensing for exploiting frequency-diversity in GPR imaging. Journal of Electromagnetic Waves and Applications. 2018. Vol. 9. No. 32. p. 1164-193,https://doi.org/10.1080/09205071.2018.1425160.
22. Imani M. F. et al. Review of Metasurface Antennas for Computational Microwave Imaging. IEEE Transactions on Antennas and Propagation, 2020. Vol. 68. No. 3. p. 1860-1875. https://doi.org/10.1109/TAP.2020.2968795.
23. Vipul Dixit, Atul Kumar. Performance Analysis of Indoor Visible Light Communication System with Angle Diversity Transmitter. IEEE 4th Conference on Information & Communication Technology. India. 03-05 December 2020.
24. Abrar S. Alhazmi, Sanaa H. Mohamed, Osama Z. Aletri, T. E. H. El-Gorashi, Jaafar M. H. Elmirghani. Angle Diversity Trasmitter For High Speed Data Center Uplink Communications.IEEE Conference on Standards for Communications and Networking, Greece, 15-17 December 2021.
25. Roua Muwafaq Younus, Mahmod Ahmed Al Zubaidy, Safwan Hafeedh Younus Angle Diversity Receiver for Indoor Optical Wireless Communication Systems. 4th International Conference on Advanced Science and Engineering, 21-22 September 2022.
26. Weitzen J., Wallace M. Analysis of diversity performance of space diversity and cross polarization for PCS base stations. Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. USA. 06 August 2002.
27. Ullah U., Mabrouk I. B., Koziel S., Al-Hasan M.. Implementation of Spatial/Polarization Diversity for ImprovedPerformance Circularly Polarized Multiple-Input-Multiple-Output Ultra-Wideband Antenna. IEEE Access. 2020. Vol. 8. p. 64112-64119. https://doi.org/10.1109/ACCESS.2020.2984697.
28. Mengqi Zhang, Lin Peng, Yan Liang, Yufei Wang, Jie Cui. Radar Polarization Diversity Technology for Low-altitude Targets. CIE International Conference on Radar, China. 15-19 December 2021.
29. Почерняєв В.М., Сивкова Н.М., Повхліб В.С. Просторово - рознесена передача сигналів в цифрових тропосферних станціях // Наукові праці ОНАЗ ім. О.С. Попова, 2020. – №2. – С.92-99.
30. Гусятинский И.А. Дальняя тропосферная радиосвязь / И.А. Гусятинский, А.С. Немировский, А.В. Соколов, В.Н. Троицкий – М.: Связь, – 1968. – 248 с.
31. Патент України на винахід №122168 Мобільна високошвидкісна цифрова тропосферна станція/ Почерняєв В.М., Повхліб В.С., Наритник Т.М.; заявл. 01.08.2018; опубл. 25.09.2020. https://iprop-ua.com/?qi=122168.
32. Патент України на винахід 126206 Мобільна вузлова цифрова тропосферна станція/ Почерняєв В.М., Повхліб В.С., Наритник Т.М.; заявл.10.03.2020; опубл. 31.08.2022. https://iprop-ua.com/?qi=126206.
33. Почерняєв В.М., Сивкова Н.М., Магомедова М.С. Мобільна вузлова цифрова трансферна станція//Системи озброєння і військова техніка, №4(76) 2023, С. 6-15. https://doi.org/10.30748/soivt.2023.76.01
34. Сайко В.Г., Наконечний В.С., Баховський П.Ф., Сивкова Н.М. Алгоритм реалізації методу завадостійкого прийому сигналів, які випромінюються просторово рознесеними передавачами // Abstracts of I International Scientific and Practical Conference Stockholm, Sweden 5 7 April 2020. – С.247-253.
35. Почерняєв В.М., Сивкова Н.М., Повхліб В.С. Система автоматичного регулювання потужності передавача НВЧ для комбінованих мобільних цифрових тропосферно-радіорелейних станцій // Вісник НТУУ «КПІ». Серія - Радіотехніка. Радіоапаратобудування, 2021. – №84 – С.40-47.
36. Почерняєв В.М., Магомедова М.С., Сивкова Н.М., Шефер О.В. Кутовий рознесений прийом на лініях тропосферного та іоносферного зв’язку// Системи управління, навігації та зв’язку, №4 (74), 2023.- С.167-170. https://doi.org/10.26906/SUNZ.2023.4.167.
37. Почерняєв В.М., Магомедова М.С., Сивкова Н.М. Плоска фазована антенна решітка для мобільних цифрових станцій зв'язку «точка-багатоточка» НВЧ діапазону// Системи управління, навігації та зв’язку, №2 (76), 2024. – С.187– 190. https://doi.org/10.26906/SUNZ.2024.2.187.
2. Патент №120288 Україна. Мобільна цифрова тропосферно-радіорелейна станція / Почерняєв В.М., Повхліб В.С., Зайченко В.В.; заявл. 29.08.2017; опублік. 11.11.2019// Бюл.№21. https://iprop-ua.com/?qi=120288.
3. Патент №127524 Україна. C2. Мобільна цифрова тропосферно-іоносферна станція/ Почерняєв В.М., Сивкова Н.М., Повхліб В.С., Магомедова М.С. // заяв.07.07.2021; опублік. 20.09.2023. https://iprop-ua.com/?qi=127524.
4. Почерняев В.М. Устройства на частично заполненных диэлектриком волноводах/ В.М. Почерняев. – Киев: УКНИПСК, 2000. – 224с.
5. Почерняев В.Н., Цибизов К.Н. Теория сложных волноводов, Науковий світ, 2003, с.223.
6. Weimin Kang. A Probabilistic Shaping Scheme for MIMO Systems with Signal Space Diversity. IEEE Wireless Communications and Networking Conference, USA. 10-13 April 2022.
7. Xiang Gao, Zhanji Wu, Sheng He, Yongtao Shi, Xiaoping Zhou. Enhanced MIMO cooperative communication based on signal space diversity. 9th Int. Conference on Communications and Networking in China, China. 14-16 August 2014.
8. Ghasemzadeh P., Hempel M., Banerjee S., Sharif H. A Spatial-Diversity MIMO Dataset for RF Signal Processing Research. IEEE Transactions on Instrumentation and Measurement. 2021. Vol. 70. pp. 1-10.
9. Aekkarat Lorphichian, Auttapon Pomsathit, Jintana Nakasuwan, Thanupong Srikalsin, Chawalit Benjangkaprasert. Systems. Korea. 14-17 October 2008.
10. Chang-Soon Choi, Yozo Shoji, Hiroyo Ogawa. Analysis of receiver space diversity gain for millimeter-wave self-heterodyne transmission techniques under two-path channel environments. IEEE Radio and Wireless Symposium, USA. January 2007.
11. Mehmet Akif Kurt, Ali Tugberk Dogukan, Ertugrul Basar. Spatial Modulation Using Signal Space Diversity. IEEE Communications Letters. 11 January 2023. рр.1020 – 1024.
12. Tingting Song, Ke Wang, Ampalavanapillai Nirmalathas, Christina Lim, Elaine Wong, Kamal Alameh. Demonstration of Optical Wireless Communications using Spatial Modulation with Signal Space Diversity. IEEE Photonics Conference (IPC). USA. 29 September 2019 - 03 October 2019.
13. Lagunas M. A., Perez Neira A. I., Amin M. G., Vidal J. Spatial processing for frequency diversity schemes. IEEE Transactions on Signal Processing, Feb. 2000. Vol. 48. No. 2. pp. 353-362. https://doi.org/10.1109/78.823963.
14. Kurt M. A., Dogukan A. T., Basar E. Spatial Modulation Using Signal Space Diversity. IEEE Communications Letters. March 2023. Vol. 27. No. 3. pp. 1020-1024. https://doi.org/10.1109/LCOMM.2023.3236025.
15. Giri, R.K., Patnaik, B. BER analysis and capacity evaluation of FSO system using hybrid subcarrier intensity modulation with receiver spatial diversity over log-normal and gamma–gamma channel model. Opt Quant Electron. 2018. No. 50. p.231. https://doi.org/10.1007/s11082-018-1499-8.
16. Kim S.-J., Han S.-K. Power Efficiency Analysis of Spatial Diversity Based Vertical FSO Links With Pointing Error in Multiple Beam Transmissions. IEEE Access, 2022. Vol. 10. pp. 25-31. https://doi.org/10.1109/ACCESS.2022.3228528.
17. Gorbunov S., Rashich A. Spatial receive diversity for SEFDM based system. 42nd International Conference on Telecommunications and Signal Processing, Budapest. 2019. pp. 265-268. https://doi.org/ 10.1109/TSP.2019.8769085.
18. Jha P.K., Kachare N., Kalyani K., Kumar D.S. Performance analysis of FSO using relays and spatial diversity under lognormal fading channel. 4th International Conference on Electrical Energy Systems, India. 2018. pp. 121-125. https://doi.org/10.1109/ICEES.2018.8442405.
19. Zhao X., Yu L., He F. Wide Range Swath SAR Imaging Method Based On Coherent Frequency Diverse Array Radar. 7th International Conference on Signal and Image Processing, Suzhou, China. 2022. pp. 576-580. https://doi.org/10.1109/ICSIP55141.2022.9886965.
20. Carvajal Mora H., Orozco N.G., Chiliguano P.T., De Almeida C. Enabling Signal Space Diversity for MU-MIMO/OFDMA https://doi.org/10.1109/ACCESS.2019.2934638.
21. Salucci M., Gelmini A., Poli L., Oliveri G., Massa A. Progressive compressive sensing for exploiting frequency-diversity in GPR imaging. Journal of Electromagnetic Waves and Applications. 2018. Vol. 9. No. 32. p. 1164-193,https://doi.org/10.1080/09205071.2018.1425160.
22. Imani M. F. et al. Review of Metasurface Antennas for Computational Microwave Imaging. IEEE Transactions on Antennas and Propagation, 2020. Vol. 68. No. 3. p. 1860-1875. https://doi.org/10.1109/TAP.2020.2968795.
23. Vipul Dixit, Atul Kumar. Performance Analysis of Indoor Visible Light Communication System with Angle Diversity Transmitter. IEEE 4th Conference on Information & Communication Technology. India. 03-05 December 2020.
24. Abrar S. Alhazmi, Sanaa H. Mohamed, Osama Z. Aletri, T. E. H. El-Gorashi, Jaafar M. H. Elmirghani. Angle Diversity Trasmitter For High Speed Data Center Uplink Communications.IEEE Conference on Standards for Communications and Networking, Greece, 15-17 December 2021.
25. Roua Muwafaq Younus, Mahmod Ahmed Al Zubaidy, Safwan Hafeedh Younus Angle Diversity Receiver for Indoor Optical Wireless Communication Systems. 4th International Conference on Advanced Science and Engineering, 21-22 September 2022.
26. Weitzen J., Wallace M. Analysis of diversity performance of space diversity and cross polarization for PCS base stations. Ninth IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. USA. 06 August 2002.
27. Ullah U., Mabrouk I. B., Koziel S., Al-Hasan M.. Implementation of Spatial/Polarization Diversity for ImprovedPerformance Circularly Polarized Multiple-Input-Multiple-Output Ultra-Wideband Antenna. IEEE Access. 2020. Vol. 8. p. 64112-64119. https://doi.org/10.1109/ACCESS.2020.2984697.
28. Mengqi Zhang, Lin Peng, Yan Liang, Yufei Wang, Jie Cui. Radar Polarization Diversity Technology for Low-altitude Targets. CIE International Conference on Radar, China. 15-19 December 2021.
29. Почерняєв В.М., Сивкова Н.М., Повхліб В.С. Просторово - рознесена передача сигналів в цифрових тропосферних станціях // Наукові праці ОНАЗ ім. О.С. Попова, 2020. – №2. – С.92-99.
30. Гусятинский И.А. Дальняя тропосферная радиосвязь / И.А. Гусятинский, А.С. Немировский, А.В. Соколов, В.Н. Троицкий – М.: Связь, – 1968. – 248 с.
31. Патент України на винахід №122168 Мобільна високошвидкісна цифрова тропосферна станція/ Почерняєв В.М., Повхліб В.С., Наритник Т.М.; заявл. 01.08.2018; опубл. 25.09.2020. https://iprop-ua.com/?qi=122168.
32. Патент України на винахід 126206 Мобільна вузлова цифрова тропосферна станція/ Почерняєв В.М., Повхліб В.С., Наритник Т.М.; заявл.10.03.2020; опубл. 31.08.2022. https://iprop-ua.com/?qi=126206.
33. Почерняєв В.М., Сивкова Н.М., Магомедова М.С. Мобільна вузлова цифрова трансферна станція//Системи озброєння і військова техніка, №4(76) 2023, С. 6-15. https://doi.org/10.30748/soivt.2023.76.01
34. Сайко В.Г., Наконечний В.С., Баховський П.Ф., Сивкова Н.М. Алгоритм реалізації методу завадостійкого прийому сигналів, які випромінюються просторово рознесеними передавачами // Abstracts of I International Scientific and Practical Conference Stockholm, Sweden 5 7 April 2020. – С.247-253.
35. Почерняєв В.М., Сивкова Н.М., Повхліб В.С. Система автоматичного регулювання потужності передавача НВЧ для комбінованих мобільних цифрових тропосферно-радіорелейних станцій // Вісник НТУУ «КПІ». Серія - Радіотехніка. Радіоапаратобудування, 2021. – №84 – С.40-47.
36. Почерняєв В.М., Магомедова М.С., Сивкова Н.М., Шефер О.В. Кутовий рознесений прийом на лініях тропосферного та іоносферного зв’язку// Системи управління, навігації та зв’язку, №4 (74), 2023.- С.167-170. https://doi.org/10.26906/SUNZ.2023.4.167.
37. Почерняєв В.М., Магомедова М.С., Сивкова Н.М. Плоска фазована антенна решітка для мобільних цифрових станцій зв'язку «точка-багатоточка» НВЧ діапазону// Системи управління, навігації та зв’язку, №2 (76), 2024. – С.187– 190. https://doi.org/10.26906/SUNZ.2024.2.187.
Опубліковано
2024-09-06
Як цитувати
Pochernyaev V. Мобільні цифрові тропосферні станції з комбінуванням просторово-рознесених сигналів / V. Pochernyaev, M. Mahomedova, N. Syvkova // Системи управління, навігації та зв’язку. Збірник наукових праць. – Полтава: ПНТУ, 2024. – Т. 3 (77). – С. 211-215. – doi:https://doi.org/10.26906/SUNZ.2024.3.211.
Розділ
Зв’язок, телекомунікації та радіотехніка
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.