ANALYSIS OF PERSONALITY DETECTION AND WRITER IDENTIFICATION METHODS

Authors

  • M. Shupyliuk Kharkiv National University of Radio Electronics
  • V. Martovytskyi Kharkiv National University of Radio Electronics

DOI:

https://doi.org/10.26906/SUNZ.2025.1.138-142

Keywords:

handwriting, handwriting analysis, personality, handwriting features, graphology, personality detection, writer identification

Abstract

Handwritten text as multi-sensory activity can show one’s personality and at the same time can serve as one’s
biometric identifier. Handwriting analysis is used in various fields including history, forensic, education, security, personnel
matters etc. In this article handwriting analysis methodologies were considered and categorized in four groups highlighting
advantages and disadvantages of each group. Also, this article depicts various problems associated with developing handwriting
analysis systems such as improper feature extraction, overfitting, underfitting, unreliable training data, picking model for
assessing personality types, etc. Both methods for robust offline writer identification and methods for prediction of human
personality that are used in state-of-the-art handwriting analysis systems are presented. In addition, current studies and common
approaches for performance measurement and database selection in both writer identification and personality detection fields
were analyzed. Also, perspective development directions of modern handwriting analysis systems are presented.

Downloads

References

1. Hengl M. Comparison of the Branches of Handwriting Analysis, Часопис Національного університету "Острозька академія". Серія: Право. – 2014. – № 2(10)

2. Hemlata S. Personality detection using handwriting analysis: Review / Hemlata S., Singh S. // In Seventh International Conference on Advances in Computing, Electronics and Communication. – 2018. – 18-19 August – P. 85-89. DOI: https://doi.org/10.15224/978-1-63248-157-3-33

3. Alaei F. Review of age and gender detection methods based on handwriting analysis / Alaei F., Alaei A. // Neural Computing and Applications. – 2023. – September – P. 23909-23925. DOI: https://doi.org/10.1007/s00521-023-08996-x

4. Christlein V. Writer Identification Using GMM Supervectors and Exemplar-SVMs / Christlein V., Bernecker D., Hönig F., Maier A., Angelopoulou E. // Pattern Recognition. – 2017. – Vol. 63 – March – P. 258-267. DOI: https://doi.org/10.1016/j.patcog.2016.10.005

5. Christlein V. Unsupervised Feature Learning for Writer Identification and Writer Retrieval / Christlein V., Gropp M., Fiel S., Maier A., // In 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). – 2017. – Vol. 13 – 9-15 November. DOI: https://doi.org/10.1109/ICDAR.2017.165

6. Chen S. Semi-supervised Feature Learning For Improving Writer Identification / Chen S., Wang Y., Lin C., Ding W., Cao Z. // Information Sciences. – 2019. – Vol. 482 – May – P. 156-170. DOI: https://doi.org/10.1016/j.ins.2019.01.024

7. He S. Deep adaptive learning for writer identification based on single handwritten word images / He S., Schomaker L. // Pattern Recognition. – 2019. – Vol. 88 – April – P. 64-74. DOI: https://doi.org/10.1016/j.patcog.2018.11.003

8. Helal L. G. Representation Learning and Dissimilarity for Writer Identification / Helal L. G., [et al.]. // 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). – 2019. – June – P. 63-68. DOI: https://doi.org/10.1109/IWSSIP.2019.8787293

9. Sulaiman A. Length Independent Writer Identification Based on the Fusion of Deep and Hand-Crafted Descriptors / Sulaiman A., Omar K., Nasrudin M. F., Arram A. // IEEE Access. – 2019. – Vol. 7 – June – P. 91772–91784. DOI: https://doi.org/10.1109/ACCESS.2019.2927286

10. Kumar P. Segmentation-free writer identification based on convolutional neural network / Kumar P., Sharma A. // Computers & Electrical Engineering. – 2012. – Vol. 85 – June. DOI: https://doi.org/10.1016/j.compeleceng.2020.106707

11. He S. FragNet: Writer Identification Using Deep Fragment Networks / He S., Schomaker L. // IEEE Transactions on Information Forensics and Security. – 2020. – Vol. 15 – March – P. 3013–3022. DOI: https://doi.org/10.1109/TIFS.2020.2981236

12. Koepf M. Writer Identification and Writer Retrieval Using Vision Transformer for Forensic Documents / Koepf M., Kleber F., Sablatnig R., // Document Analysis Systems. – 2022. – May – P. 352–366. DOI: https://doi.org/10.1007/978-3-031-06555-2_24

13. Semma A. Writer Identification using Deep Learning with FAST Keypoints and Harris corner detector / Semma A., Hannad Y., Siddiqi I., Djeddi C., El Youssfi El Kettani M. // Expert Systems with Applications. – 2021. – Vol. 184 – Dec– P. 115473. DOI: https://doi.org/10.1016/j.eswa.2021.115473

14. He S. GR-RNN: Global-Context Residual Recurrent Neural Networks for Writer Identification / He S., Schomaker L. // Pattern Recognition. – 2021. – Vol. 117 – Apr. DOI: https://doi.org/10.1016/j.patcog.2021.107975

15. Wirmanto S. Offline Handwriting Writer Identification using Depth-wise Separable Convolution with Siamese Network / Wirmanto S., Agustini D.A.R., Atmanto D.A., // International Journal On Informatics Visualization. – 2024. P. 535–541. DOI: https://doi.org/10.62527/joiv.8.1.2148

16. Purohit N. State-of-the-Art: Offline Writer Identification Methodologies / Purohit N., Panwar S., // International Conference on Computer Communication and Informatics (ICCCI). – 2021. – Jan – P. 1–8. DOI: https://doi.org/10.1109/ICCCI50826.2021.9402539

17. Ahmed B. Q. Offline text-independent writer identification using a codebook with structural features / Ahmed B. Q., Hassan Y. F., Elsayed A. S., // PLOS ONE 18. – 2023. – Vol. 18(4) – April – P. 1–31. DOI: https://doi.org/10.1371/journal.pone.0284680

18. Gavrilescu M. Study on determining the Myers-Briggs personality type based on individual’s handwriting / Gavrilescu M., // In Proceedings of the 5th IEEE International Conference on E-Health and Bioengineering. – 2015. – Nov – P. 1–6. DOI: https://doi.org/10.1109/EHB.2015.7391603

19. Połap D. Flexible neural network architecture for handwritten signatures recognition / Połap D., Wozniak M., // International Journal of Electronics and Telecommunications. – 2016. – Vol. 62(2) – April – P. 197–202. DOI: https://doi.org/10.1515/eletel-2016-0027

20. Topaloglu M. Gender detection and identifying one’s handwriting with handwriting analysis / Topaloglu M., Ekmekci S., // ExpertSystems with Applications. – 2017. – Vol. 79 – March – P. 236–243. DOI: https://doi.org/10.1016/j.eswa.2017.03.001

21. Gavrilescu M. Predicting the big five personality traits from handwriting / Gavrilescu M., Vizireanu N., // EURASIP Journala on Image and Video Processing – 2018. – Vol. 2018(1) – July. DOI: https://doi.org/10.1186/s13640-018-0297-3

22. Joshi P. A machine learning approach to employability evaluation using handwriting analysis / Joshi P., Ghaskadbi P., Tendulkar S., // In Proceedings of the Communications in Computer and Information Science ICAICR 2018. P. 253–263. DOI: https://doi.org/10.1007/978-981-13-3140-4_23

23. Wijaya W. Personality analysis through handwriting detection using android based mobile device / Wijaya W., Tolle H., Utaminingrum F., // International Journal of Information Technology and Computer Science – 2018. – Vol. 2(2). P. 114–128. DOI: https://doi.org/10.25126/jitecs.20172237

24. Fatimah S. H. Personality features identification from handwriting using convolutional neural networks / Fatimah S. H., Djamal E. C., Ilyas R., Renaldi F. // In Proceedings of the 4th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE – 2019. – Nov. – P. 119–124. DOI: https://doi.org/10.1109/ICITISEE48480.2019.9003855

25. Chitlangia A. Handwriting analysis based on histogram of oriented gradient for predicting personality traits using SVM / Chitlangia A., Malathi G., // Procedia Computer Science – 2019. – Vol. 165 – Jan. – P. 384–390. DOI: https://doi.org/10.1016/j.procs.2020.01.034

26. Thomas S. A framework for analyzing financial behavior using machine learning classification of personality through handwriting analysis / Thomas S., Goel M., Agrawal D., // Journal of Behavioral and Experimental Finance, 2020. Vol. 26(2). DOI: https://doi.org/10.1016/j.jbef.2020.100315

27. Pathak A. R. Personality analysis through handwriting recognition / Pathak A. R., Raut A., Pawar S., Nangare M., Abbott H. S., Chandak P., // Journal of Discrete Mathematical Sciences and Cryptography – 2020. – Vol. 23(1) – Jan. – P. 19–33. DOI: https://doi.org/10.1080/09720529.2020.1721856

28. Elngar A. A. A deep learning based analysis of the big five personality traits from handwriting samples using image processing / Elngar A. A., [et al.], // Journal of Information Technology Management – 2021. – Vol. 12 – P. 3–35.

29. Bernardo L. S. A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns / Bernardo L. S., Damasevicius R., De Albuquerque V. H. C., Maskeliunas R., // International Journal of Applied Mathematics and Computer Science – 2021. – Vol. 31(4) – Dec. – P. 549–561. DOI: https://doi.org/10.34768/amcs-2021-0037

30. Rahman A. U. Predicting the big five personality traits from hand-written text features through semi-supervised learning / Rahman A. U., Halim Z., // Multimedia Tools and Applications – 2022. – Vol. 81(23) – Sep. – P. 1–17. DOI: https://doi.org/10.1007/s11042-022-13114-5

31. Samsuryadi S.. A Framework for Determining the Big Five Personality Traits Using Machine Learning Classification through Graphology / Samsuryadi S., [et al.], // Journal of Electrical and Computer Engineering. 2023. Vol. 2023(1). Jan. P. 1–15. DOI: https://doi.org/10.1155/2023/1249004

32. Lepri F. Is big ve better than MBTI? / Lepri F., Lepri. B., // Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it – 2018. – Jan. – P. 93–98. DOI: https://doi.org/10.4000/books.aaccademia.3147

Downloads

Published

2025-03-12