ANALYSIS OF PERSONALITY DETECTION AND WRITER IDENTIFICATION METHODS
DOI:
https://doi.org/10.26906/SUNZ.2025.1.138-142Keywords:
handwriting, handwriting analysis, personality, handwriting features, graphology, personality detection, writer identificationAbstract
Handwritten text as multi-sensory activity can show one’s personality and at the same time can serve as one’s
biometric identifier. Handwriting analysis is used in various fields including history, forensic, education, security, personnel
matters etc. In this article handwriting analysis methodologies were considered and categorized in four groups highlighting
advantages and disadvantages of each group. Also, this article depicts various problems associated with developing handwriting
analysis systems such as improper feature extraction, overfitting, underfitting, unreliable training data, picking model for
assessing personality types, etc. Both methods for robust offline writer identification and methods for prediction of human
personality that are used in state-of-the-art handwriting analysis systems are presented. In addition, current studies and common
approaches for performance measurement and database selection in both writer identification and personality detection fields
were analyzed. Also, perspective development directions of modern handwriting analysis systems are presented.
Downloads
References
1. Hengl M. Comparison of the Branches of Handwriting Analysis, Часопис Національного університету "Острозька академія". Серія: Право. – 2014. – № 2(10)
2. Hemlata S. Personality detection using handwriting analysis: Review / Hemlata S., Singh S. // In Seventh International Conference on Advances in Computing, Electronics and Communication. – 2018. – 18-19 August – P. 85-89. DOI: https://doi.org/10.15224/978-1-63248-157-3-33
3. Alaei F. Review of age and gender detection methods based on handwriting analysis / Alaei F., Alaei A. // Neural Computing and Applications. – 2023. – September – P. 23909-23925. DOI: https://doi.org/10.1007/s00521-023-08996-x
4. Christlein V. Writer Identification Using GMM Supervectors and Exemplar-SVMs / Christlein V., Bernecker D., Hönig F., Maier A., Angelopoulou E. // Pattern Recognition. – 2017. – Vol. 63 – March – P. 258-267. DOI: https://doi.org/10.1016/j.patcog.2016.10.005
5. Christlein V. Unsupervised Feature Learning for Writer Identification and Writer Retrieval / Christlein V., Gropp M., Fiel S., Maier A., // In 14th IAPR International Conference on Document Analysis and Recognition (ICDAR). – 2017. – Vol. 13 – 9-15 November. DOI: https://doi.org/10.1109/ICDAR.2017.165
6. Chen S. Semi-supervised Feature Learning For Improving Writer Identification / Chen S., Wang Y., Lin C., Ding W., Cao Z. // Information Sciences. – 2019. – Vol. 482 – May – P. 156-170. DOI: https://doi.org/10.1016/j.ins.2019.01.024
7. He S. Deep adaptive learning for writer identification based on single handwritten word images / He S., Schomaker L. // Pattern Recognition. – 2019. – Vol. 88 – April – P. 64-74. DOI: https://doi.org/10.1016/j.patcog.2018.11.003
8. Helal L. G. Representation Learning and Dissimilarity for Writer Identification / Helal L. G., [et al.]. // 2019 International Conference on Systems, Signals and Image Processing (IWSSIP). – 2019. – June – P. 63-68. DOI: https://doi.org/10.1109/IWSSIP.2019.8787293
9. Sulaiman A. Length Independent Writer Identification Based on the Fusion of Deep and Hand-Crafted Descriptors / Sulaiman A., Omar K., Nasrudin M. F., Arram A. // IEEE Access. – 2019. – Vol. 7 – June – P. 91772–91784. DOI: https://doi.org/10.1109/ACCESS.2019.2927286
10. Kumar P. Segmentation-free writer identification based on convolutional neural network / Kumar P., Sharma A. // Computers & Electrical Engineering. – 2012. – Vol. 85 – June. DOI: https://doi.org/10.1016/j.compeleceng.2020.106707
11. He S. FragNet: Writer Identification Using Deep Fragment Networks / He S., Schomaker L. // IEEE Transactions on Information Forensics and Security. – 2020. – Vol. 15 – March – P. 3013–3022. DOI: https://doi.org/10.1109/TIFS.2020.2981236
12. Koepf M. Writer Identification and Writer Retrieval Using Vision Transformer for Forensic Documents / Koepf M., Kleber F., Sablatnig R., // Document Analysis Systems. – 2022. – May – P. 352–366. DOI: https://doi.org/10.1007/978-3-031-06555-2_24
13. Semma A. Writer Identification using Deep Learning with FAST Keypoints and Harris corner detector / Semma A., Hannad Y., Siddiqi I., Djeddi C., El Youssfi El Kettani M. // Expert Systems with Applications. – 2021. – Vol. 184 – Dec– P. 115473. DOI: https://doi.org/10.1016/j.eswa.2021.115473
14. He S. GR-RNN: Global-Context Residual Recurrent Neural Networks for Writer Identification / He S., Schomaker L. // Pattern Recognition. – 2021. – Vol. 117 – Apr. DOI: https://doi.org/10.1016/j.patcog.2021.107975
15. Wirmanto S. Offline Handwriting Writer Identification using Depth-wise Separable Convolution with Siamese Network / Wirmanto S., Agustini D.A.R., Atmanto D.A., // International Journal On Informatics Visualization. – 2024. P. 535–541. DOI: https://doi.org/10.62527/joiv.8.1.2148
16. Purohit N. State-of-the-Art: Offline Writer Identification Methodologies / Purohit N., Panwar S., // International Conference on Computer Communication and Informatics (ICCCI). – 2021. – Jan – P. 1–8. DOI: https://doi.org/10.1109/ICCCI50826.2021.9402539
17. Ahmed B. Q. Offline text-independent writer identification using a codebook with structural features / Ahmed B. Q., Hassan Y. F., Elsayed A. S., // PLOS ONE 18. – 2023. – Vol. 18(4) – April – P. 1–31. DOI: https://doi.org/10.1371/journal.pone.0284680
18. Gavrilescu M. Study on determining the Myers-Briggs personality type based on individual’s handwriting / Gavrilescu M., // In Proceedings of the 5th IEEE International Conference on E-Health and Bioengineering. – 2015. – Nov – P. 1–6. DOI: https://doi.org/10.1109/EHB.2015.7391603
19. Połap D. Flexible neural network architecture for handwritten signatures recognition / Połap D., Wozniak M., // International Journal of Electronics and Telecommunications. – 2016. – Vol. 62(2) – April – P. 197–202. DOI: https://doi.org/10.1515/eletel-2016-0027
20. Topaloglu M. Gender detection and identifying one’s handwriting with handwriting analysis / Topaloglu M., Ekmekci S., // ExpertSystems with Applications. – 2017. – Vol. 79 – March – P. 236–243. DOI: https://doi.org/10.1016/j.eswa.2017.03.001
21. Gavrilescu M. Predicting the big five personality traits from handwriting / Gavrilescu M., Vizireanu N., // EURASIP Journala on Image and Video Processing – 2018. – Vol. 2018(1) – July. DOI: https://doi.org/10.1186/s13640-018-0297-3
22. Joshi P. A machine learning approach to employability evaluation using handwriting analysis / Joshi P., Ghaskadbi P., Tendulkar S., // In Proceedings of the Communications in Computer and Information Science ICAICR 2018. P. 253–263. DOI: https://doi.org/10.1007/978-981-13-3140-4_23
23. Wijaya W. Personality analysis through handwriting detection using android based mobile device / Wijaya W., Tolle H., Utaminingrum F., // International Journal of Information Technology and Computer Science – 2018. – Vol. 2(2). P. 114–128. DOI: https://doi.org/10.25126/jitecs.20172237
24. Fatimah S. H. Personality features identification from handwriting using convolutional neural networks / Fatimah S. H., Djamal E. C., Ilyas R., Renaldi F. // In Proceedings of the 4th International Conference on Information Technology, Information Systems and Electrical Engineering, ICITISEE – 2019. – Nov. – P. 119–124. DOI: https://doi.org/10.1109/ICITISEE48480.2019.9003855
25. Chitlangia A. Handwriting analysis based on histogram of oriented gradient for predicting personality traits using SVM / Chitlangia A., Malathi G., // Procedia Computer Science – 2019. – Vol. 165 – Jan. – P. 384–390. DOI: https://doi.org/10.1016/j.procs.2020.01.034
26. Thomas S. A framework for analyzing financial behavior using machine learning classification of personality through handwriting analysis / Thomas S., Goel M., Agrawal D., // Journal of Behavioral and Experimental Finance, 2020. Vol. 26(2). DOI: https://doi.org/10.1016/j.jbef.2020.100315
27. Pathak A. R. Personality analysis through handwriting recognition / Pathak A. R., Raut A., Pawar S., Nangare M., Abbott H. S., Chandak P., // Journal of Discrete Mathematical Sciences and Cryptography – 2020. – Vol. 23(1) – Jan. – P. 19–33. DOI: https://doi.org/10.1080/09720529.2020.1721856
28. Elngar A. A. A deep learning based analysis of the big five personality traits from handwriting samples using image processing / Elngar A. A., [et al.], // Journal of Information Technology Management – 2021. – Vol. 12 – P. 3–35.
29. Bernardo L. S. A hybrid two-stage SqueezeNet and support vector machine system for Parkinson’s disease detection based on handwritten spiral patterns / Bernardo L. S., Damasevicius R., De Albuquerque V. H. C., Maskeliunas R., // International Journal of Applied Mathematics and Computer Science – 2021. – Vol. 31(4) – Dec. – P. 549–561. DOI: https://doi.org/10.34768/amcs-2021-0037
30. Rahman A. U. Predicting the big five personality traits from hand-written text features through semi-supervised learning / Rahman A. U., Halim Z., // Multimedia Tools and Applications – 2022. – Vol. 81(23) – Sep. – P. 1–17. DOI: https://doi.org/10.1007/s11042-022-13114-5
31. Samsuryadi S.. A Framework for Determining the Big Five Personality Traits Using Machine Learning Classification through Graphology / Samsuryadi S., [et al.], // Journal of Electrical and Computer Engineering. 2023. Vol. 2023(1). Jan. P. 1–15. DOI: https://doi.org/10.1155/2023/1249004
32. Lepri F. Is big ve better than MBTI? / Lepri F., Lepri. B., // Proceedings of the Fifth Italian Conference on Computational Linguistics CLiC-it – 2018. – Jan. – P. 93–98. DOI: https://doi.org/10.4000/books.aaccademia.3147
Downloads
Published
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.