INTERACTION TECHNOLOGY BETWEEN NODES OF THE EDGE LAYER OF THE INTERNET OF THINGS

Authors

  • H. Kozhevnikov
  • M. Markevych
  • O. Matyash

DOI:

https://doi.org/10.26906/SUNZ.2024.4.092

Keywords:

Internet of Things, fog computing, cloud system, edge calculations

Abstract

Topicality. Internet of Things (IoT) systems are becoming increasingly popular in various industries today. Cloud technology is used to process information flows coming from a large number of end sensors. But when operational transactions enter the cloud, QoS requirements are not met. The solution to this problem was facilitated by the emergence of single-board computers at the edge layer of the Internet of Things. The purpose of the article is to selection of the technology for interaction between the nodes of the edge layer of the Internet of Things, which is focused on the limited computing resources of nodes close to IoT sensors. Research results. An analysis of the characteristics of existing technologies for interaction of computing nodes of the lower layer of the Internet of Things was conducted, the advantages and disadvantages of each technology were highlighted. As a result, the remote procedure call technology was chosen as the basic one. The process of assigning tasks at the lower layer of the Internet of Things was simulated using the selected technology. Conclusion. The proposed approach to organizing the interaction of computing nodes of the lower layer of the Internet of Things using remote procedure call technology made it possible to meet the QoS requirements for operational IoT transactions.

Downloads

Download data is not yet available.

References

Schulz, A.S. (2023). User Interactions with Internet of Things (IoT) Devices in Shared Domestic Spaces. ACM International Conference Proceeding Series, 577–579. doi: https://doi.org/10.1145/3626705.3632615

Chalapathi, G.S.S., Chamola, V., Vaish, A., Buyya, R. (2022). Industrial internet of things (Iiot) applications of edge and fog computing: A review and future directions. Advances in Information Security, 83, 293–325. doi: https://doi.org/10.1007/978-3-030-57328-7_12

Petrovska, I., Kuchuk, H. (2023). Adaptive resource allocation method for data processing and security in cloud environment. Advanced Information Systems, 7(3), 67–73. doi: https://doi.org/10.20998/2522-9052.2023.3.10

Pardo, C., Wei, R., Ivens, B.S. (2022). Integrating the business networks and internet of things perspectives: A system of systems (SoS) approach for industrial markets. Industrial Marketing Management, 104, 258–275. doi:https://doi.org/10.1016/j.indmarman.2022.04.012

Zakharchenko, A., Stepanets, O. (2023). Digital twin value in intelligent building development. Advanced Information Systems, 7(2), 75–86. doi: https://doi.org/10.20998/2522-9052.2023.2.11

Li, G., Liu, Y., Wu, J., Lin, D., Zhao, Sh. (2019). Methods of Resource Scheduling Based on Optimized Fuzzy Clustering in Fog Computing. Sensors, MDPI, 19(9). doi: https://doi.org/10.3390/s19092122

Qayyum, T., Trabelsi, Z., Waqar Malik, A., Hayawi, K. (2022). Mobility-aware hierarchical fog computing framework for Industrial Internet of Things. Journal of Cloud Computing, 11(1), 72. doi: https://doi.org/10.1186/s13677-022-00345-y

Zuev, A., Karaman, D., Olshevskiy, A. (2023). Wireless sensor synchronization method for monitoring short-term events. Advanced Information Systems, 7(4), 33–40. doi: https://doi.org/10.20998/2522-9052.2023.4.04

Kuchuk G., Kovalenko A., Komari I.E., Svyrydov A., Kharchenko V. Improving big data centers energy efficiency: Traffic based model and method. Studies in Systems, Decision and Control, vol 171. Kharchenko, V., Kondratenko, Y., Kacprzyk, J. (Eds.). Springer Nature Switzerland AG, 2019. Pp. 161-183. DOI: http://doi.org/10.1007/978-3-030-00253-4_8

Кучук Н. Г., Мерлак В. Ю., Скородєлов В. В. Метод зменшення часу доступу до слабкоструктурованих даних. Сучасні інформаційні системи. 2020. Т. 4, № 1. С. 97-102. doi: https://doi.org/10.20998/2522-9052.2020.1.14

Kalaiselvi, P., Michael Jones, M., Murugesh, S., Veerakumar, K., Prakash, N. (2023), Design And Implementation of Smart Billing System, 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology, ICSEIET 2023, страницы 212–218, doi: http://dx.doi.org/10.1109/ICSEIET58677.2023.10303608

Кучук Г.А. Управління трафіком мультисервісної розподіленої телекомунікаційної мережі / Г.А. Кучук // Системи управління, навігації та зв’язку. – К.: ЦНДІ НіУ, 2007. – Вип. 2. – С. 18-27.

Кучук Г.А. Розрахунок навантаження мультисервісної мережі / Г.А. Кучук, Я.Ю. Стасєва, О.О. Болюбаш // Системи озброєння і військова техніка. – 2006. – № 4 (8). – С. 130 – 134.

Кучук Г. А., Можаєв О. О., Воробйов О. В. Метод прогнозування фрактального трафіка. Радіоелектронні та комп'ютерні системи. 2006. № 6 (18). С. 181 - 188.

Jayasuriya, D.B., Perera, I. (2019), Ontology Based Software Design Documentation for Design Reasoning, MERCon 2019 - Proceedings, 5th International Multidisciplinary Moratuwa Engineering Research Conference, pp. 710–715, 8818813, doi:http://dx.doi.org/10.1109/MERCon.2019.8818813

Худов В.Г., Кучук Г.А., Маковейчук О.М., Крижний А.В. Аналіз відомих методів сегментування зображень, що отримані з бортових систем оптикоелектронного спостереження. Системи обробки інформації, 2016. Вип. 9 (146). С. 77-80.

Gomathi, B., Saravana Balaji, B., Krishna Kumar, V., Abouhawwash, M., Aljahdali, S., Masud, M. and Kuchuk, N. (2022), “Multi-Objective Optimization of Energy Aware Virtual Machine Placement in Cloud Data Center”, Intelligent Automation and Soft Computing, Vol. 33(3), pp. 1771–1785, doi: http://dx.doi.org/10.32604/iasc.2022.024052

Published

2024-11-28