IMPROVEMENT OF THE CONTROL SYSTEM MODEL OF A MOBILE PLATFORM UNDER THE INFLUENCE OF ELECTROMAGNETIC SPECTRUM THREATS IN THE INFORMATION ENVIRONMENT
DOI:
https://doi.org/10.26906/SUNZ.2024.3.025Keywords:
control system, unmanned vehicles, electromagnetic spectrum threats, video processing, mobile platformAbstract
The article presents a control system model for a mobile robotic platform (unmanned vehicle) and proposes methods for improving the control system elements under the influence of electromagnetic spectrum threats in the information environment. The control model for the robotic platform includes the ability to operate the platform mechanisms in two modes: manual and automated. The use of the mobile platform in manual mode is necessary for operational control in the absence of electromagnetic interference aimed at disrupting the data transmission devices of the robotic platform. To ensure the operation of the mobile platform under the presence of electromagnetic interference, the control system must be capable of managing the platform devices in an automated or automatic mode. The aim of the article is to formalize the control system model for the mobile platform, identify the shortcomings of existing control systems, and explore ways to eliminate these shortcomings. The results obtained: quantitative indicators from the conducted research indicate the potential use of video information processing models, used by the unmanned vehicle operator for spatial orientation, for the autonomous operation of the unmanned vehicle. Conclusions: the implementation of data processing models in the mobile platform's control system will enable the automation of control processes for the unmanned vehicle under conditions of electromagnetic interference affecting the data transmission devices of the robotic platform.Downloads
References
Victor Krasnobayev, Alina Yanko and Alina Hlushko. Information Security of the National Economy Based on an Effective Data Control Method. Journal of International Commerce, Economics and Policy, 14(3), 2023, article no. 2350021. DOI:10.1142/S1793993323500217.
До експлуатації в ЗСУ допустили понад 40 БПЛА та понад 20 наземних роботів [Електронний ресурс] // ГО «Український мілітарний центр». – 2024. – Режим доступу до ресурсу: https://mil.in.ua/uk/news/do-ekspluatatsiyi-v-zsudopustyly-ponad-40-bpla-ta-ponad-20-nazemnyh-robotiv/.
Milrem Robotics відкрила новий завод наземних дронів [Електронний ресурс] // ГО «Український мілітарний центр». – 2024. – Режим доступу до ресурсу: https://mil.in.ua/uk/news/milrem-robotics-vidkryla-novyj-zavod-nazemnyh-droniv/.
В Україні протестували наземні безпілотники [Електронний ресурс] // ГО «Український мілітарний центр». – 2023. – Режим доступу до ресурсу: https://mil.in.ua/uk/news/v-ukrayini-protestuvaly-nazemni-bezpilotnyky/.
Shefer, O., Laktionov, O., Pents, V., Hlushko, A., & Kuchuk, N. (2024). Practical principles of integrating artificial intelligence into the technology of regional security predicting. Advanced Information Systems, 8(1), 86–93. https://doi.org/10.20998/2522-9052.2024.1.11
Yanko A. Method for the control verification of digital information, represented in a residue number system / Yanko A., Krasnobayev V., Tur S. // Advanced Information Systems. 2020. Vol. 4, No. 2. ISSN2522-9052. – P. 149-156.
Boriak B. R. Filtering and forecasting signals algorithm based on exponential brown’s filter / B. R. Boriak, A. M. Silvestrov // Control, Navigation and Communication Systems. Academic Journal. – Poltava: PNTU, 2017. – VOL. 4 (44). – PP. 150–152.
Боряк Б. Р. Аналіз ефективності застосування адаптивного двоконтурного фільтра-екстраполятора залежно від форми сигналу / Б. Р. Боряк, А. М. Сільвестров // Системи управління, навігації та зв’язку. Збірник наукових праць. – Полтава: ПНТУ, 2017. – Т. 6 (46). – С. 255–259.
OpenCV Tracking API Documentation [Електронний ресурс]. – 2023. – Режим доступу до ресурсу: https://docs.opencv.org/4.x/d9/df8/group__tracking.html
Object Tracking using OpenCV (C++/Python) Tutorial [Електронний ресурс] – 2017. – Режим доступу до ресурсу: https://learnopencv.com/object-tracking-using-opencv-cpp-python/