DEVELOPMENT AND RESEARCH OF A SERVICE FOR UPPER LIMBS SMART PROSTHESIS
DOI:
https://doi.org/10.26906/SUNZ.2023.4.137Keywords:
smart prosthesis, microcontroller, modeling, software implementation, myoelectric sensorAbstract
The object of research of this work is the process of functioning of a smart prosthesis controlled by a microprocessor. The purpose of this work is to research the service for a smart prosthesis of the upper limbs. The main task of this research is the analysis of analogs of existing prostheses on the market, the choice of the type of prosthesis for development and research, the selection of the development and modeling environment, platform and microcontroller, the software implementation of the algorithm of the prosthesis and the study of the electronic and live service model for a smart prosthesis using myoelectric sensors. As a result of the study of existing analogues, certain problems were identified and ways to solve them were found. The selection of components was carried out in accordance with the task. Development and testing of the developed service was carried out based on virtual and real-life simulation. The prospects of the developed service were determined and the great potential of the proposed development was revealed to facilitate the life of people who for certain reasons do not have functioning upper limbs and are financially limited in prosthetics.Downloads
References
Types of prostheses: cosmetic, myoelectric, self-powered. – Pohlig GmbH [Електронний ресурс]. – Режим доступу: https://www.pohlig.net/en/types-of-prostheses-finger-hand-arm.
Igual C. Myoelectric Control for Upper Limb Prostheses. / C. Igual, L. A. Pardo, J. M. Hahne, J. Igual // Electronics. – 2019. – Vol. 8. – Iss. 11. – Article no 1244. DOI: https://doi.org/10.3390/electronics8111244
Jiang N. Myoelectric Control of Artificial Limbs– Is There a Need to Change Focus? / N. Jiang, S. Dosen; K.-R. Muller, D. Farina // IEEE Signal Processing Magazine. – 2012 – Vol. 29, Iss. 5. – P. 152-160. DOI: https://doi.org/10.1109/MSP.2012.2203480
Upper Limb Prosthetics Market Size, Trends. Global Growth 2030. Global Market Research Company. – Strategic Market Research. URL: https://www.strategicmarketresearch.com/market-report/upper-limb-prosthetics-market.
Upper Limb Prosthetics Market Size | Growth Prediction - 2030. – Allied Market Research [Електронний ресурс]. – Режим доступу: https://www.alliedmarketresearch.com/upper-limb-prosthetics-market-A12065.
Наймитенко С. І. Розробка сервісу для розумного протезу / С. І. Наймитенко, А. О. Подорожняк // Інформаційні технології: наука, техніка, освіта, здоров’я: Тези доповідей XXX МНТК MicroCAD-2022. Харків: НТУ “ХПІ”. – С. 903.
Наймитенко С. І. Апаратно-програмний сервіс для розумного протезу / С. І. Наймитенко, А. О. Подорожняк // Інформаційні технології: наука, техніка, освіта, здоров’я: Тези доп. XXXІ МНТК MicroCAD-2023, Харків: НТУ “ХПІ”. С. 1125.
Henson A. Introduction to Myoelectric Prostheses. Redefining Possibility – Arm Dynamics [Електронний ресурс]. – Режим доступу: https://www.armdynamics.com/upper-limb-library/introduction-to-myoelectric-prostheses.
Наймитенко С. І. Розробка та дослідження сервісу для розумного протезу / С. І. Наймитенко, А. О. Подорожняк // Збірник наукових праць за матеріалами XV Всеукраїнської науково-практичної конференції «Актуальні проблеми комп’ютерних наук АПКН-2023». 17-18 листопада 2023 року – Хмельницький: ХНУ, 2023. – С. 209-212.
Ever A. EMG sensor – Hackaday.io, 04.12.2018 [Електронний ресурс]. – Режим доступу: https://hackaday.io/project/113338-publys-an-open-source-biosensing-board/log/143756-emg-sensor.
Simple Dry Electrode EMG for Arduino. – Autodesk Instructables [Електронний ресурс]. – Режим доступу: https://www.instructables.com/Simple-Dry-Electrode-EMG-for-Arduino/.
Kadhim D.A. Comparative analysis of machine learning algorithms on myoelectric signal from intact and transradial amputated limbs / D.A. Kadhim, M.N. Raheema, J.S. Hussein // IAES International Journal of Artificial Intelligence. – 2023. – Vol. 12. – Iss. 4. – P. 1735–1743. DOI: https://doi.org/10.11591/ijai.v12.i4.pp1735-1743.
Parzhin Y. Detector neural network vs connectionist ANNs / Y. Parzhin, V. Kosenko, A. Podorozhniak, O. Malyeyeva, V. Timofeyev // Neurocomputing. – 2020. – Vol. 414. – P. 191 – 203. DOI: https://doi.org/10.1016/j.neucom.2020.07.025.