INTERACTION BETWEEN «S-BOTS» ONE «SWARM-BOT» SYSTEM IN A PHYSICAL UNORGANIZED ENVIRONMENT

Authors

  • V. Tokariev
  • I. Ilina
  • I. Shevchenko
  • I. Hrytsenko

DOI:

https://doi.org/10.26906/SUNZ.2023.4.110

Keywords:

ꞌ'Swarm-botꞌ' - system, ꞌ's-botsꞌ', embedded systems, business-to-business, business-to-consume, drones, communication, branch-and-bound method, asymmetric TSP - problem

Abstract

Today, in the field of service provision, after an analysis of the supply and demand market, research is being conducted to determine the possibility of using the ꞌ'Swarm-botꞌ' - system platform for delivering orders to end users. In the role of ꞌ's-botsꞌ', which are part of one ꞌ'Swarm-botꞌ' - system, drones are actively used. Delivery of orders and correspondence using the ꞌ'Swarm-botꞌ' - system platform implies the presence of a specialized container placed on the drone body. Research is being conducted to see if drones can replace the email messages we're all used to. When implementing the ꞌ'Swarm-botꞌ' - system platform into real operation, a person participates in the delivery process as an operator, and drones move along a preprogrammed route. Today, the most optimal way to solve the problem of reducing the order delivery distance is to solve the asymmetric TSP problem (travelling salesman problem). This article is devoted to exploring the possibility of applying an algorithm based on the ꞌ'branch-and-boundꞌ' method to solve an asymmetric TSP problem in B2C deliveries using the ꞌ'Swarmbotꞌ' - system platform in a physical unorganized environment.

Downloads

Download data is not yet available.

References

Koshovyi M. D., Pylypenko O. T., Ilyina I. V., Tokarev V. V. Growing tree method for optimisation of multifactorial experiments, Radio Electronics, Computer Science, Control, 2023, № 3, pp. 55–61. Doi: 10.15588/1607-3274-2023-3-6.

Koshevoy N., Ilina I., Tokariev V., Malkova A., Muratov V. Implementation Of The Gravity Search Method For Optimization By Cost Expenses Of Plans For Multifactorial Experiments, Radioelectronic and Computer Systems, 2023, №. 1(105), pp. 23-32. Doi: 10.32620/reks.2023.1.02.

Кривуля Г.Ф., Токарєв В.В., Ільїна І.В., Кравець В.Є. Взаємодія між «s-bots» однієї «Swarm-bot» system у фізичному неорганізованому середовищі, Системи управління, навігації та зв'язку, 2023, №1(71), с.108-111. Doi: 10.26906/SUNZ.

Krivoulya G., Koshevoy N., Tokariev V., Ilina I., Dubinsky D. Solving the Task of Topological Formation Intelligent Mobile «S-bots» for One «Swarm-bot» System, Proceedings of the 7th International Conference on Computational Linguistics and Intelligent Systems: (COLINS 2023). CEUR Workshop Proceedings, 2023. Kharkiv. Ukraine, рр. 273-282.

Krivoulya G., Tokariev V., Ilina I., Lebediev O., Shcherbak V. Algorithm of Iterations of Distribution of Subtasks Between «S-Bot» in One «Swarm-Bot» System, Proceedings of the 6th International Conference on Computational Linguistics and Intelligent Systems: (COLINS 2022). CEUR Workshop Proceedings, 2022. Gliwice. Poland, pp. 1531-1541.

Krivoulya G., Ilina I., Tokariev V., Shcherbak V. Mathematical Model for Finding Probability of Detecting Victims of ManMade Disasters Using Distributed Computer System with Reconfigurable Structure and Programmable Logic, IEEE Int. Scientific-Practical Conf. Problems of Inf., Science and Technology: (PIC S&T), 2020. Kharkiv. Ukraine, pp.573 - 576.

Serkov A., Kravets V., Yakovenko I., Churyumov G., Tokariev V., Nannan W. Ultra Wideband Signals in Control Systems of Unmanned Aerial Vehicles, The 10h IEEE International Conference on Dependable Systems, Services and Technologies: (DESSERT’2019), 2019. Leeds. England, 2019, pp.26 - 29.

Serkov A., Pustovoitov P., Yakovenko I., Lazurenko B., Churyumov G., Tokariev V., Nannan. W. Ultra wideband technologies in mobile object management systems, Сучасні інформаційні системи, 2019, т.3, №2, cc. 22-27.

Serkov А., Breslavets V., Tolkachov M., Kravets V. Method of coding information distributed by wireless communication lines under conditions of interference, Advanced Information Systems, 2018, vol.2, no.2, pp. 145-148. Doi:10.20998/2522-9052.2018.2.25.

Серков О.А., Князєв В.В., Лазуренко Б.О., Яковенко І.В., Чурюмов Г.І., Токарєв В.В. Надширокосмугові технології в задачах забезпечення електромагнітної сумісності рухомих об’єктів, Збірник 4 міжн. НТК Проблеми електромагнітної сумісності перспективних бездротових мереж зв'язку: (ЕМС-2019), 2019. Харків. с.55 - 57.

T. Gao, X. Bai. Bayesian. Optimization-based Three-dimensional, Time-varying Environment Monitoring using an UAV, IEEE Journal of Intelligent & Robotic Systems, 2022, vol.105, no.4, pp.219 - 235. Doi:10.1007/s10846-022-01709-x.

Han, J. Jiang, C. Yu. Distributed Fault Estimation and Fixed-Time Fault-Tolerant Formation Control for Multi-UAVs subject to Sensor Faults, IEEE J. of Intelligent & Ro. Syst., 2022, vol.104, no.4, pp.310 - 325. Doi:10.1007/s10846-022-01698-x.

K. Muhammad, A. Ullah, J. Lloret. Deep Learning for Safe Autonomous Driving: Current Challenges and Future Directions, IEEE Trans. on Intelligent Transportation Systems, 2021, vol.22, no.7, pp.4316 - 4336. Doi:10.1109/TITS.2020.3032227.

L. Zhao, Y. Song, C. Zhang. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction, IEEE Transactions on Intelligent Transportation Systems, 2020, vol.21, no.9, pp.3848 - 3858. Doi:10.1109/TITS.2019.2935152.

E. Seraj, A. Silva, M. Gombolay. Multi-UAV planning for cooperative wildfire coverage and tracking with quality-of-service guarantees, Autonomous Agents and Multi-Agent Systems, article number.39, 2022, Springer. Doi:10.1007/s10458-022-09566-6.

Published

2023-12-12