CONSTRUCTION OF MATHEMATICAL MODEL OF SPECIAL PROCESSOR FOR PROCESSING OF CRYPTOGRAPHIC INFORMATION ON THE BASIS OF USE OF MAIN PROPERTIES OF NON-POSITIONAL CODES

Authors

  • A. Yanko
  • O. Shefer
  • Y. Denysenko

DOI:

https://doi.org/10.26906/SUNZ.2021.4.083

Keywords:

computer system, non-positional number system, number system, residual class system, special processor of cryptographic information processing

Abstract

The principles of realization of arithmetic operations in the system of residual classes (SRC) are investigated. Studies have shown that in this number system, numbers are represented by their remainders from the division into the selected system of bases, and all rational operations can be performed in parallel over the digits of each digit separately. The main properties of SRC (independence of residues, equality of residues, low-bit residues) allow to eliminate the shortcomings of the positional number system. The joint use of the first and second properties (independence and equality of residues) determines the presence of three main types of redundancy in special processor of processing of the cryptographic information (SPPCI) at the same time: structural, informational and functional. And such a property of SRC as low-bit residues allows a wide choice of implementation of arithmetic operations. The use of the considered principles and basic properties of SRC opens wide possibilities in construction not only of new machine arithmetic, but also fundamentally new circuit realization of processors. On the basis of the researched information the mathematical model of the SPPCI on the basis of use of the basic properties of non-positional code structures was constructed. Based on these researches, we conducted a comparative analysis of the reliability of the triple positional SPPCI with the majority element of SPPCI in SRC on reliability, applying the considered reliable model.

Downloads

Download data is not yet available.

References

Krasnobayev V., Kuznetsov A., Yanko A., Koshman S., Zamula A. and Kuznetsova T. Data processing in the system of residual classes. Monograph. ASC Academic Publishing, 2019, 208 p.

Акушский И.Я,. Юдицкий Д.И. Машинная арифметика в остаточных классах. – М.: Сов. Радио, 1968. – 444 с.

Krasnobayev V., Yanko A. and Koshman S. A. Method for arithmetic comparison of data represented in a residue number system. Cybernetics and Systems Analysis, vol. 52, Issue 1, 2016, pp. 145–150.

Tuazon. J. O. Residue number system in computer arithmetic. Doctor of Philosophy, Iowa State University, Digital Repository, Ames, 1969.

Yadin А. Computer Systems Architecture. Chapman and Hall/CRC, 2016.

Donets V., Kuchuk N., Shmatkov S. Development of software of e-learning information system synthesis modeling process. Сучасні інформаційні системи. 2018. Т. 2, No 2. С. 117–121. DOI: https://doi.org/10.20998/2522-9052.2018.2.20

Кучук Н.Г., Гавриленко С.Ю., Лукова-Чуйко Н.В., Собчук В.В. Перерозподіл інформаційних потоків у гіперконвенгертній системі / С.Ю. Гавриленко. Сучасні інформаційні системи. 2019. Т.3, No2. С. 116-121. DOI: https://doi.org/10.20998/2522-9052.2019.2.20

Nechausov A., Mamusuĉ I., Kuchuk N. Synthesis of the air pollution level control system on the basis of hyperconvergent infrastructures. Сучасні інформаційні системи. 2017. Т. 1, No 2. С. 21 – 26. DOI: https://doi.org/10.20998/2522-9052.2017.2.04

ISCI’2019: Information Security in Critical Infrastructures. Collective mono-graph. Edited by Ivan D. Gorbenko and Alexandr A. Kuznetsov. ASC Academic Publishing, Minden, Nevada USA, 2019, 445 p. – ISBN: 978-0-9989826-8-7 (Hardback), ISBN: 978-0-9989826-9-4 (Ebook)

Published

2021-12-01

Most read articles by the same author(s)

1 2 > >>