USE OF ASSOCIATIVE MEMORY FOR PROJECTING TECHNOLOGICAL PROCESS
DOI:
https://doi.org/10.26906/SUNZ.2019.3.099Keywords:
technological process, associative memory, neural networksAbstract
A data bank is using during designing technological processes of machining, in which it is necessary to find the required information and put it together depending on the task. This process raises the need to build a multi-level structure of data processing. It is also necessary to provide a quick search for the required information in the data bank. This problem can be solved with the help of an associative memory, which can be applied as during searching for information and while further saving the obtained technological process. The aim of the article is the development of neural networks of associative memory for the design and saving of technological processes for high-precision and unique parts. Results. A technological process for the production of a specific part with the using of the proposed neural networks of associative memory has been developed. The algorithm for training individual modules of a multilayer network is the process of determining the training set of images and constructing the weight matrices of the links between the input and output layers of the neurons. When using associative memory, the speed of data work is increased due to the parallel processing of information. Mathematical modeling of the production process details confirmed the correctness of the theoretical principles. Conclusions. The neural networks for the design and saving of technological processes for the production of high-precision parts have been developed.Downloads
References
Петраков Ю.В. Теорія автоматичного управління в металообробці: навч. посібник / Ю.В. Петраков. – К.: ІЗМН, 1999. – 212 с.
Бунаков П. Технологическая подготовка производства в САПР / П, Бунаков, Э.Широких. – Москва : ДМК Пресс, 2012. – 208 с.
Токликишвили А.Г., Рогулин А.Г., Колесникова О.В., Лелюхин В.Е. Организация технологической подготовки производства на производственных предприятиях [Электронный ресурс]// Современные проблемы науки и образования. – 2015. – № 2-1. – Режим доступа к статье: https://www.science-education.ru/ru/article/view?id=21346
Таненбаум Э. Архитектура компьютера.5-е изд. СПб.: Питер, 2007. 844 с.
Хмелевский И.В., Битюцкий В.П. Организация ЭВМ и систем. Однопроцессорные ЭВМ. Часть 3.: Конспект лекций. Екатеринбург: ГОУ ВПО УГТУ-УПИ, 2005. 100 с.
Хайкин С. Нейронные сети: полный курс / С. Хайкин. М:. Изд. дом "Вильямс", 2016. 1104 с.
Kosko B. Optical bi-directional associative memories/ Kosko B. // SPIE Proceedings: Image Understanding, 1987. – 758 с.
Charu C. Aggarwal Neural Networks and Deep Learning: A Textbook / Charu C. Aggarwal – IMB T.J. Watson Research Center , 2018. – 94 с.
Дмитриенко В.Д. Гибридная иерархическая нейронная сеть для хранения знаний технологического процесса механообработки / В.Д. Дмитриенко, И.П. Хавина // Вісник НТУ «ХПІ». Збірник наукових праць. Серія: Інформатика та моделювання. Харків: НТУ "ХПІ", 2013. № 39 (1012). С. 68-72.