DEVELOPMENT OF COGNITIVE RADIO CODES SELECTION METHOD WITH MULTIPLE ACCESS OF PRIMARY AND SECONDARY USERS WITH THE USE OF ENERGY HARVESTING TECHNOLOGY UNDER THE CONTROL OF THE NEURAL NETWORK

Authors

  • Ya. Obikhod
  • V. Lysechko
  • O. Progonniy
  • Н. Kachurovskiy
  • S. Skolota

DOI:

https://doi.org/10.26906/SUNZ.2018.3.165

Keywords:

secondary user, energy conservation, cognitive radio, collision, neural network, primary user, data transmission, radio waves, radio frequency spectrum

Abstract

Cognitive radio (CD) is one of the main parts of telecommunication communication systems (TCS-IOE) in connection with what was called to solve the problem of spectrum deficit and the introduction of intellectual functions. The choice of channel with multiple access of primary users (PCs) and secondary users (VCs) is one of the most important issues of the standard. Due to the competition of channels there is a mutual influence of packages of primary and secondary users. In order to reduce channel competition among secondary users, a method for choosing cognitive radio channels was developed at the multiple access of primary and secondary users using the technology "Energy Harvesting" under the control of the neural network. Based on the developed method, a hybrid model for data transmission under the control of the neural network for each secondary user was implemented. For this model there are properties in which a secondary user may randomly operate unregulatedly in combination with the occupied channels using the technology "Energy Harvesting" (EH) and the overlap. In addition, to implement the developed method, the criterion for choosing a channel based on competition among the multiple requests of secondary users for data transmission or the " Energy Harvesting" technology was determined. Based on this criterion, a competing set of sequences is created. The simulation shows that the proposed channel sharing method and the channel selection criterion outperform other methods in terms of false occupation (error), average throughput, average waiting time, and second-power energy efficiency.

Downloads

References

Shiang, H., van der Schaar. Distributed resource management in multi-hop cognitive radio networks for delay sensitive transmission. IEEE Transactions on Vehicular Technology, 58(2), 941–953,2012.

J. Jin, J. Gubbi, S. Marusic, and M. Palaniswami, “An information framework for creating a smart city through internet of things,” IEEE Internet of Things Journal, vol. 1, no. 2, pp. 112–121, 2014.

C. Zhu, V. C. M. Leung, L. Shu, and E. C. H. Ngai, “Green internet of things for smart world,” IEEE Access, vol. 3, pp. 2151–2162, 2015.

W. Li, C. Zhu, V. C. M. Leung, L. T. Yang, and Y. Ma, “Performance comparison of cognitive radio sensor networks for industrial IoT with different deployment patterns,” IEEE Systems Journal, 2015.

W. Li, V. Leung, C. Zhu, and Y. Ma, “Scheduling and routing methods for cognitive radio sensor networks in regular topology,” Wireless Communications and Mobile Computing, vol. 16, no. 1, pp. 47–58, 2016.

Y. C. Liang, K. C. Chen, G. Y. Li, and P. Mahonen, “Cognitive radio networking and communications: an overview,” IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3386–3407, 2011.

E. Z. Tragos, S. Zeadally, A. G. Fragkiadakis, and V. A. Siris, “Spectrum assignment in cognitive radio networks: a comprehensive survey,” IEEE Communications Surveys & Tutorials, vol. 15, no. 3, pp. 1108–1135, 2013

X. Zhai, L. Zheng, and C. W. Tan, “Energy-infeasibility tradeoff in cognitive radio networks: price-driven spectrum access algorithms,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 3, pp. 528–538, 2014.

Y. Yilmaz, Z. Guo, and X. Wang, “Sequential joint spectrum sensing and channel estimation for dynamic spectrum access,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 11, pp. 2000–2012, 2014.

N. Khambekar, C. M. Spooner, and V. Chaudhary, “On improving serviceability with quantified dynamic spectrum access,” in Proceedings of the IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN '14), pp. 553–564, McLean, Va, USA, April 2014.

T. M. C. Chu, H. Phan, and H. J. Zepernick, “Hybrid interweave-underlay spectrum access for cognitive cooperative radio networks,” IEEE Transactions on Communications, vol. 62, no. 7, pp. 2183–2197, 2014.

V. Chakravarthy, X. Li, R. Zhou, Z. Wu, and M. Temple, “Novel overlay/underlay cognitive radio waveforms using sd-smse framework to enhance spectrum efficiency-part II: analysis in fading channels,” IEEE Transactions on Communications, vol. 58, no. 6, pp. 1868–1876, 2010.

K. Karmokar, S. Senthuran, and A. Anpalagan, “Physical layer-optimal and cross-layer channel access policies for hybrid overlay-underlay cognitive radio networks,” IET Communications, vol. 8, no. 15, pp. 2666–2675, 2014.

J. Zou, H. Xiong, D. Wang, and C. W. Chen, “Optimal power allocation for hybrid overlay/underlay spectrum sharing in multiband cognitive radio networks,” IEEE Transactions on Vehicular Technology, vol. 62, no. 4, pp. 1827–1837, 2013.

H. Cho and G. Hwang, “An optimized random channel access policy in cognitive radio networks under packet collision requirement for primary users,” IEEE Transactions on Wireless Communications, vol. 12, no. 12, pp. 6382–6391, 2013.

S. Xie and Y. Wang, “Construction of tree network with limited delivery latency in homogeneous wireless sensor networks,” Wireless Personal Communications, vol. 78, no. 1, pp. 231–246, 2014. View at Publisher

J. Shen, H. Tan, J. Wang, J. Wang, and S. Lee, “A novel routing protocol providing good transmission reliability in underwater sensor networks,” Journal of Internet Technology, vol. 16, no. 1, pp. 171–178, 2015.

S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: survey and implications,” IEEE Communications Surveys & Tutorials, vol. 13, no. 3, pp. 443–461, 2011.

Pratibha, K. H. Li, and K. C. Teh, “Energy-harvesting cognitive radio systems cooperating for spectrum sensing and utilization,” in Proc. of the IEEE Global Communications Conference (GLOBECOM '15), San Diego, Calif, USA, December 2015.

S. Hu, Y. D. Yao, and Z. Yang, “Cognitive medium access control protocols for secondary users sharing a common channel with time division multiple access primary users,” Wireless Communications and Mobile Computing, vol. 14, no. 2, pp. 284–296, 2014.

H. A. B. Salameh and M. F. El-Attar, “Cooperative OFDM-based virtual clustering scheme for distributed coordination in cognitive radio networks,” IEEE Transactions on Vehicular Technology, vol. 64, no. 8, pp. 3624–3632, 2015.

S. Park, H. Kim, and D. Hong, “Cognitive radio networks with energy harvesting,” IEEE Transactions on Wireless Communications, vol. 12, no. 3, pp. 1386–1397, 2013.

W. B. Chien, C. K. Yang, and Y. H. Huang, “Energy-saving cooperative spectrum sensing processor for cognitive radio system,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 58, no. 4, pp. 711–723, 2011.

P. J. Smith, P. A. Dmochowski, H. A. Suraweera, and M. Shafi, “The effects of limited channel knowledge on cognitive radio system capacity,” IEEE Transactions on Vehicular Technology, vol. 62, no. 2, pp. 927–933, 2013.

S. P. Herath and N. Rajatheva, “Analysis of equal gain combining in energy detection for cognitive radio over Nakagami channels,” in Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM '08), pp. 1–5, New Orleans, La, USA, November 2008.

T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Communications Surveys & Tutorials, vol. 11, no. 1, pp. 116–130, 2009.

M. G. Khoshkholgh, K. Navaie, and H. Yanikomeroglu, “Access strategies for spectrum sharing in fading environment: overlay, underlay, and mixed,” IEEE Transactions on Mobile Computing, vol. 9, no. 12, pp. 1780–1793, 2010.

Y. Wang, P. Ren, F. Gao, and Z. Su, “A hybrid underlay/overlay transmission mode for cognitive radio networks with statistical quality-of-service provisioning,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1482–1498, 2014.

Published

2018-07-03

Issue

Section

Communication, telecommunications and radio engineering