COORDINATES DATA FUSION WITH PROBABILISTIC APPROACH

Authors

  • I. Ostroumov

DOI:

https://doi.org/10.26906/SUNZ.2018.3.003

Keywords:

coordinates, position, data fusion, Bayesian, probability, accuracy, aircraft

Abstract

The paper is devoted to the task of positioning that plays an important role in navigating an aircraft in airspace, the accuracy of which depends on the safety of aviation. The paper considers the most common avionics of civil aircraft that includes equipment of Global Navigation Satellite System (GNSS), Inertial Navigation System, and area navigation positioning algorithms within Flight Management System (FMS) functionality for positioning using signals from navigational aids. Each of considered equipment meets the required level of accuracy, continuity, and integrity of coordinate data, which depend on a variety of factors. In terms of global availability and the best accuracy, GNSS is considered as a primary source of data, however positioning by navigational aids data can be used in case of GNSS lock or pure accuracy positioning. In addition, the paper regards different algorithms of coordinate’s detection in FMS: positioning by Distance Measurement Equipment (DME) realizing time of arrival method, positioning by VHF Omni-directional radio Range (VOR) or Automatic Directional Finder (ADF) data that uses angle of arrival methods. Data fusion process is considered at different levels. VOR/DME data processing is represented at the paper as a particular case of low-level data fusion. A block-diagram of sensor coordinate data fusion that includes lower level of sensor data fusion and multi sensor coordinates fusion from pair based and multi sensors approaches is proposed. Proposed approach of data fusion is grounded on weight coefficients that indicate accuracy of each positioning algorithm at high level of integration. At high level of data fusion, a probabilistic approach for a case when the distribution of measurement errors have Gaussian form is proposed. Verification of probabilistic data fusion approach has been performed with iterative computer based simulation. Trajectory of AUI58 flight was recorded by ADS-B equipment and used in simulation part. Stochastic simulation of DME and VOR measured data was used in pair-based (DME/DME, VOR/DME, VOR/VOR) and multi navigational aids algorithms of coordinates detection. Results of simulation indicate the possibility of data fusion weighted algorithm application for civil aviation.

Downloads

References

Performance-based Navigation (PBN) Manual. Doc 9613. – ICAO, 2008. – 304 p.

Global Navigation Satellite System (GNSS) Manual. Doc 9849. – ICAO, 2012. – 68 p.

Ostroumov I. Accuracy estimation of alternative positioning in navigation / I. Ostroumov, N. Kuzmenko // 2016 IEEE 4th International Conference «Methods and Systems of Navigation and Motion Control» (MSNMC), October 18-20, – 2016 : proceedings. – Kyiv, 2016. – Р. 291-294.

Castanedo F. A review of data fusion techniques / F. Castanedo // The Scientific World Journal. – 2013. – 19 p.

Handbook of multisensor data fusion: theory and practice / M. E. Liggins, D. L. Hall, J. Llinas. – CRC press, 2017. – 872 p. ISBN 978-1-4200-5308-1

Guo D. Multisensor Data-Fusion-Based Approach to Airspeed Measurement Fault Detection for Unmanned Aerial Vehicles / D. Guo, M. Zhong, D. Zhou // IEEE Transactions on Instrumentation and Measurement. – 2018. – № 67(2). – Р. 317-327.

Jiang L. Asynchronous Multirate Multisensor Data Fusion over Unreliable_Measurements with Correlated_Noise / L. Jiang, L. Yan, Y. Xia, Q. Guo, M. Fu, K. Lu // IEEE Transactions on Aerospace and Electronic Systems. – 2017. – Р. 2427 – 2437.

Jiang L. Event-triggered multisensor data fusion with correlated noise / L. Jiang, L. Yan, Y. Xia, Q. Guo, M. Fu, B. Xiao // In Information Fusion (Fusion), 2017 20th International Conference on IEEE. – 2017. – Р. 1-8.

Shimin F. Fusing Kinect sensor and inertial sensors with multi-rate Kalman filter / F. Shimin, R. Murray-Smith. – 2014. – 192 p.

Panicker M. Multisensor data fusion for an autonomous ground vehicle / M. Panicker, T. Mitha, K. Oak, A.M. Deshpande, C. Ganguly // Advances in Signal Processing (CASP), Conference on IEEE. – 2017. – Р. 507-512.

Авіоніка: навч. посіб. / В.П. Харченко, І.В. Остроумов – К.: НАУ, 2012 – 281 с.

Lubbers B. A study on the accuracy of GPS positioning during jamming / B. Lubbers, S. Mildner, P. Onincx, A. Scheele // Navigation World Congress (IAIN), – 2015, International Association of Institutes, IEEE. – Р. 1–6.

Остроумов І.В. Оцінювання точності визначення лінії положення за парою далекомірного обладнання DME при вирішені навігаційних задач / І.В. Остроумов // Системи управління, навігації та зв’язку. – 2017. – № 2 (42). – С. 8-12.

Остроумов І.В. Оцінювання точності DME/DME позиціонування для повітряного простору України / Остроумов І.В. // Проблеми інформатизації та управління: Збірник наукових праць: Випуск 3(43). – К.:НАУ, 2013.– С. 61-67.

Ostroumov I.V. Analysis of DME/DME positioning facility for Ukrainian airspace // The Seventh World Congress “Aviation in the XXI-st century – Safety in Aviation and Space Technologies". Volume 2. – Kyiv: NAU, 2016. – Р. 3.6.1-3.6.4

Ostroumov I.V. Timing problem of multi DME/DME approach // The Seventh World Congress “Aviation in the XXI-st century – Safety in Aviation and Space Technologies". Volume 2. – Kyiv: NAU, 2016. – Р. 3.6.5-3.6.7.

Published

2018-07-03