АНАЛІЗ ПРОГНОЗУВАННЯ ПОВЕДІНКИ ВІДВІДУВАЧА ВЕБ-САЙТУ

Автор(и)

  • D. V. Grynov
  • D. S. Boiko
  • M. A. Holub

DOI:

https://doi.org/10.26906/SUNZ.2018.1.099

Ключові слова:

електронна комерція, моделі поведінки, соціальна мережа, банк, маркетинг

Анотація

В статті розглянуті основні підходи процесу прогнозування поведінки відвідувача веб-сайту. Наведені прикладиіснуючих методів та методик прогнозування, надані висновки щодо необхідності аналізу існуючих та побудови новихмоделей поведінки, а також складання прогнозів за допомогою цих моделей у процесі ведення бізнесу. Також надан методи використання соціальних мереж для збільшення числа клієнтів фінансових установ, підвищення задоволеностіпродуктами банку та зростання їх конкурентоспроможності. Визначається підхід до стратегії використання соціальних медіа в банківській сфері.

Завантаження

Дані завантаження ще не доступні.

Посилання

Понятие электронной коммерции [Электронный ресурс] // Режим доступа к статье: http http://laboureconomics.ru/neweconomics/131-ecommerce.

US e-commenrce sales grow 15.6% in 2016 [Электронный ресурс] // Режим доступа к статье: https://www.digitalcommerce360.com/2017/02/17/. 1. The Wall Street Journal, March 13, 2014, [Электронный ресурс] // Режим доступа к статье: http://online.wsj.com/news/articles.

Sudheer K. Reddy. An Effective Methodology for Pattern Discovery in Web Usage Mining, International Journal of Computer Science and Information Technologies, Vol. 3 (2) 2012, рр. 3664-3667.

Vedpriya Dongre, Jadgish Raikwal, An Improved user Browsing Behavior Prediction Using Web Log Analysis, Internmational Journal of Advanced Research in Computer Engineering & Technology, Volum 4 Issue 5, May 2015, рр. 1838-1842с.

Наибольшая общая подпоследовательность [Электронный ресурс] // Режим доступа: https://en. wikipedia.org/wiki/Longest_common_subsequence_problem.

Gang Fang, Jia-Le Wang, Hong Ying, Jiang Xiong, A double algorithm of Web usage mining based on sequence number, IEEE 2009

A. Awad and Issa Khalil, Prediction of User’s Web- Browsing Behavior: Application of Markov Model, IEEE Transaction 2010.

Knowing What to Sell, When, and to Whom [Электронный ресурс] // Режим доступа: https://hbr.org/ 2006/03/knowing-what-to-sell-when-and-to-whom.

The Wall Street Journal, March 13, 2014, [Электронный ресурс] // Режим доступа к статье: http://online.wsj.com/news/a.rticles/SB1000142405270230354 6204579437692833009398

Официальный рейтинг банков Украины [Электронный ресурс] // Режим доступа к статье: http://banker.ua/officialrating/.

CREDIT SCORING BASED ON SOCIAL NETWORK DATA [Электронный ресурс] // Режим доступа: https://bijournal.hse.ru/data/2015/10/12/1076342406/2.pdf.

Social Media and the Workplace // Режим доступа к статье: http://www.pewinternet.org/2016/06/22/ social-media-and-the-workplace/

Рейтинг популярных в Украине сайтов за октябрь 2017 года [Электронный ресурс] // https://itc.ua/ news/reyting-populyarnyih-v-ukraine-saytov-v-oktyabre-2017- goda-sotsialnyie-seti-novostnyie-i-e-commerce-saytyi-vyiroslia- sanktsionnyie-resursyi-poteryali-ohvat/.

Harvard Business Review, 2010 [Электронный ресурс] // Режим доступа: http://www.sas.com/resources/whitepaper/wp_23348.pdf.

Опубліковано

2018-02-08