РОЗРОБКА ТА ДОСЛІДЖЕННЯ АРХІТЕКТУРНОЇ МОДЕЛІ СИСТЕМИ ОБМІНУ ПЕРСОНАЛЬНИМИ ДАНИМИ НА ОСНОВІ БЛОКЧЕЙН

  • Olexander Shmatko
  • Dmytro Kulinich
  • Tetiana Gorbach
Ключові слова: блокчейн, персональні дані пацієнтів, IoTM, смарт-контракти, Ethereum, модель системи обміну медичними даними

Анотація

Актуальність. Сучасне суспільство стикається з зростаючою потребою у безпечному, на-дійному та прозорому обміні персональними даними пацієнтів у сфері охорони здоров'я. Захист конфіденційності та цілісності медичної інформації є пріоритетом для забезпечення якісного та ефективного медичного догляду. Блокчейн-технології надають обіцяючий інструмент для вирішення цієї проблеми, дозволяючи створити децентралізовану та безпечну систему обміну персональними да-ними пацієнтів. Метою даної роботи є забезпечення високого рівня безпеки та конфіденційності медичних даних, а також підвищення ефективності процесів у сфері охорони здоров'я за рахунок розробки програмних компонентів системи обміну персональними даними пацієнтів на основі блокчейн-технологій. Об’єктом дослідження є система обміну персональними даними пацієнтів у сфері охорони здоров'я. Предметом дослідження є програмні компоненти, що базуються на блокчейн-технологіях, призначені для забезпечення безпеки, прозорості та ефективності обміну медичною інформацією. Результати. У даній роботі запропоновано архітектурну модель безпечної та ефективної системи обміну медичними даними, яка може бути широко впроваджена у сфері охорони здоров'я. Висновок. Впровадження системи безпечного обміну персональними даними на основі технології блокчейн у сфері охорони здоров'я допоможе покращити якість медичного обслуговування та забезпечити швидший доступ до важливих даних для медичного персоналу. Теоретична значимість полягає у розширенні знань щодо застосування блокчейн-технологій у галузі охорони здоров'я та питань безпеки та конфіденційності медичної інформації. Це дослідження може бути основою для подальших досліджень у цій галузі та сприяти розвитку нових методів та підходів до обміну медичними даними.

Завантаження

Дані про завантаження поки що недоступні.

Посилання

1. Häyrinen Kristiina, Saranto K, Nykänen Pirkko. Definition, structure, content, use and impacts of electronic health records: a review of the research literature. Int J Med Inform. 2008 May;77(5):291–304. doi: 10.1016/j.ijmedinf.2007.09.001.S1386-5056(07)00168-2
2. Hripcsak G, Albers DJ. Next-generation phenotyping of electronic health records. J Am Med Inform Assoc. 2013 Jan 01;20(1):117–21. doi: 10.1136/amiajnl-2012-001145. http://europepmc.org/abstract/MED/22955496 .amiajnl-2012-001145
3. Ludwick DA, Doucette J. Adopting electronic medical records in primary care: lessons learned from health information systems implementation experience in seven countries. Int J Med Inform. 2009 Jan;78(1):22–31. doi: 10.1016/j.ijmedinf.2008.06.005.S1386-5056(08)00092-0
4. Zahabi M, Kaber DB, Swangnetr M. Usability and Safety in Electronic Medical Records Interface Design: A Review of Recent Literature and Guideline Formulation. Hum Factors. 2015 Aug;57(5):805–34. doi: 10.1177/0018720815576827.0018720815576827
5. Mikkelsen G, Aasly J. Concordance of information in parallel electronic and paper based patient records. International Journal of Medical Informatics. 2001 Oct;63(3):123–131. doi: 10.1016/s1386-5056(01)00152-6
6. Thiru K, Hassey A, Sullivan F. Systematic review of scope and quality of electronic patient record data in primary care. BMJ. 2003 May 17;326(7398):1070. doi: 10.1136/bmj.326.7398.1070. http://europepmc.org/abstract/MED/12750210 .326/7398/1070
7. Tang PC, Ash JS, Bates DW, Overhage JM, Sands DZ. Personal health records: definitions, benefits, and strategies for overcoming barriers to adoption. J Am Med Inform Assoc. 2006;13(2):121–6. doi: 10.1197/jamia.M2025. http://europepmc.org/abstract/MED/16357345 .M2025
8. Archer N, Fevrier-Thomas U, Lokker C, McKibbon KA, Straus SE. Personal health records: a scoping review. J Am Med Inform Assoc. 2011;18(4):515–22. doi: 10.1136/amiajnl-2011-000105. http://europepmc.org/abstract/MED/21672914 .amiajnl-2011-000105
9. Roehrs A, da Costa Cristiano André, Righi RDR, de Oliveira Kleinner Silva Farias. Personal Health Records: A Systematic Literature Review. J Med Internet Res. 2017 Jan 06;19(1):e13. doi: 10.2196/jmir.5876.
10. Rudin RS, Motala A, Goldzweig CL, Shekelle PG. Usage and Effect of Health Information Exchange. Ann Intern Med. 2014 Dec 02;161(11):803. doi: 10.7326/m14-0877
11. Williams C, Mostashari F, Mertz K, Hogin E, Atwal P. From the Office of the National Coordinator: the strategy for advancing the exchange of health information. Health Aff (Millwood) 2012 Mar;31(3):527–36. doi: 10.1377/hlthaff.2011.1314.31/3/527
12. Cimino JJ, Frisse ME, Halamka J, Sweeney L, Yasnoff W. Consumer-mediated health information exchanges: the 2012 ACMI debate. J Biomed Inform. 2014 Apr;48:5–15. doi: 10.1016/j.jbi.2014.02.009. https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(14)00046-X .S1532-0464(14)00046-X
13. Zhuang Y, Sheets LR, Chen Y, Shae Z, Tsai JJ, Shyu C. A Patient-Centric Health Information Exchange Framework Using Blockchain Technology. IEEE J. Biomed. Health Inform. 2020 Aug;24(8):2169–2176. doi: 10.1109/jbhi.2020.2993072.
14. Gordon WJ, Catalini C. Blockchain Technology for Healthcare: Facilitating the Transition to Patient-Driven Interoperability.Comput Struct Biotechnol J. 2018;16:224–230. doi: 10.1016/j.csbj.2018.06.003.https://linkinghub.elsevier.com/retrieve/pii/S2001-0370(18)30028-X .S2001-0370(18)30028-X
15. Zhang P, White J, Schmidt DC, Lenz G, Rosenbloom ST. FHIRChain: Applying Blockchain to Securely and Scalably ShareClinical Data. Comput Struct Biotechnol J. 2018;16:267–278. doi: 10.1016/j.csbj.2018.07.004. https://linkinghub.elsevier.com/retrieve/pii/S2001-0370(18)30037-0 .S2001-0370(18)30037-0
16. Murphy DR, Satterly T, Rogith D, Sittig DF, Singh H. Barriers and facilitators impacting reliability of the electronic health record-facilitated total testing process. Int J Med Inform. 2019 Jul;127:102–108. doi: 10.1016/j.ijmedinf.2019.04.004.S1386- 5056(18)31386-8
17. Tanwar S, Parekh K, Evans R. Blockchain-based electronic healthcare record system for healthcare 4.0 applications. Journal of Information Security and Applications. 2020 Feb;50:102407. doi: 10.1016/j.jisa.2019.102407
18. Dagher GG, Mohler J, Milojkovic M, Marella PB. Ancile: Privacy-preserving framework for access control and interoperability of electronic health records using blockchain technology. Sustainable Cities and Society. 2018 May;39:283–297. doi: 10.1016/j.scs.2018.02.014.
19. Zhang A, Lin X. Towards Secure and Privacy-Preserving Data Sharing in e-Health Systems via Consortium Blockchain. J Med Syst. 2018 Jun 28;42(8):140. doi: 10.1007/s10916-018-0995-5.10.1007/s10916-018-0995-5
20. Cao S, Zhang G, Liu P, Zhang X, Neri F. Cloud-assisted secure eHealth systems for tamper-proofing EHR via blockchain. Information Sciences. 2019 Jun;485:427–440. doi: 10.1016/j.ins.2019.02.038.
21. Nakamoto S. Bitcoin: A peer-to-peer electronic cash system. Bitcoin: Open Source P2P Money. 2008. [2021-04-23]. https://bitcoin.org/bitcoin.pdf .
22. Ferdous MS, Chowdhury MJM, Hoque MA. A survey of consensus algorithms in public blockchain systems for cryptocurrencies. Journal of Network and Computer Applications. 2021 May;182:103035. doi: 10.1016/j.jnca.2021.103035.
23. Kuo T, Zavaleta Rojas H, Ohno-Machado L. Comparison of blockchain platforms: a systematic review and healthcare examples. J Am Med Inform Assoc. 2019 May 01;26(5):462–478. doi: 10.1093/jamia/ocy185.
24. McGhin T, Choo KR, Liu CZ, He D. Blockchain in healthcare applications: Research challenges and opportunities. Journal of Network and Computer Applications. 2019 Jun;135:62–75. doi: 10.1016/j.jnca.2019.02.027.
25. Vazirani AA, O'Donoghue O, Brindley D, Meinert E. Implementing Blockchains for Efficient Health Care: Systematic Review. J Med Internet Res. 2019 Feb 12;21(2):e12439. doi: 10.2196/12439. https://www.jmir.org/2019/2/e12439/ v21i2e12439
26. Hussien HM, Yasin SM, Udzir SNI, Zaidan AA, Zaidan BB. A Systematic Review for Enabling of Develop a Blockchain Technology in Healthcare Application: Taxonomy, Substantially Analysis, Motivations, Challenges, Recommendations and Future Direction. J Med Syst. 2019 Sep 14;43(10):320. doi: 10.1007/s10916-019-1445-8.10.1007/s10916-019-1445-8 [PubMed: 31522262] [CrossRef: 10.1007/s10916-019-1445-8]
27. Azaria A, Ekblaw A, Vieira T, Lippman A. MedRec: Using blockchain for medical data access and permission management. 2016 2nd International Conference on Open and Big Data (OBD); August 22-24; Vienna, Austria. 2016. pp. 25–30
28. Yue X, Wang H, Jin D, Li M, Jiang W. Healthcare Data Gateways: Found Healthcare Intelligence on Blockchain with Novel Privacy Risk Control. J Med Syst. 2016 Oct;40(10):218. doi: 10.1007/s10916-016-0574-6.10.1007/s10916-016-0574-6
29. Roehrs A, da Costa Cristiano André, da Rosa Righi Rodrigo. OmniPHR: A distributed architecture model to integrate personal health records. J Biomed Inform. 2017 Jul;71:70–81. doi: 10.1016/j.jbi.2017.05.012.
30. Ichikawa D, Kashiyama M, Ueno T. Tamper-Resistant Mobile Health Using Blockchain Technology. JMIR Mhealth Uhealth. 2017 Jul 26;5(7):e111. doi: 10.2196/mhealth.7938. https://mhealth.jmir.org/2017/7/e111/ v5i7e111
31. Mannaro K, Baralla G, Pinna A, Ibba S. A Blockchain Approach Applied to a Teledermatology Platform in the Sardinian Region (Italy) Information. 2018 Feb 23;9(2):44. doi: 10.3390/info9020044
32. Kovalenko, A. and Kuchuk, H. (2022), “Methods to Manage Data in Self-healing Systems”, Studies in Systems, Decision and Control, Vol. 425, pp. 113–171, doi: https://doi.org/10.1007/978-3-030-96546-4_3
33. Ji Y, Zhang J, Ma J, Yang C, Yao X. BMPLS: Blockchain-Based Multi-level Privacy-Preserving Location Sharing Scheme for Telecare Medical Information Systems. J Med Syst. 2018 Jun 30;42(8):147. doi: 10.1007/s10916-018-0998-2.10.1007/s10916-018-0998-2 [PubMed: 29961160] [CrossRef: 10.1007/s10916-018-0998-2]
34. Kleinaki A, Mytis-Gkometh P, Drosatos G, Efraimidis PS, Kaldoudi E. A Blockchain-Based Notarization Service for Biomedical Knowledge Retrieval. Comput Struct Biotechnol J. 2018;16:288–297. doi: 10.1016/j.csbj.2018.08.002. https://linkinghub.elsevier.com/retrieve/pii/S2001-0370(18)30040-0 .S2001-0370(18)30040-0
35. Jamil F, Hang L, Kim K, Kim D. A Novel Medical Blockchain Model for Drug Supply Chain Integrity Management in a Smart Hospital. Electronics. 2019 May 07;8(5):505. doi: 10.3390/electronics8050505.
36. Patel V. A framework for secure and decentralized sharing of medical imaging data via blockchain consensus. Health Informatics J. 2019 Dec;25(4):1398–1411. doi: 10.1177/1460458218769699.
37. Jamil F, Ahmad S, Iqbal N, Kim D. Towards a Remote Monitoring of Patient Vital Signs Based on IoT-Based Blockchain Integrity Management Platforms in Smart Hospitals. Sensors (Basel) 2020 Apr 13;20(8):2195. doi: 10.3390/s20082195. https://www.mdpi.com/resolver?pii=s20082195 .s2008215.
Опубліковано
2024-09-06
Як цитувати
Shmatko Olexander Розробка та дослідження архітектурної моделі системи обміну персональними даними на основі блокчейн / Olexander Shmatko, Dmytro Kulinich, Tetiana Gorbach // Системи управління, навігації та зв’язку. Збірник наукових праць. – Полтава: ПНТУ, 2024. – Т. 3 (77). – С. 175-184. – doi:https://doi.org/10.26906/SUNZ.2024.3.175.
Розділ
Інформаційні технології