Розрахунок міцності залізобетонних елементів на основі розрахункового опору залізобетону
DOI:
https://doi.org/10.26906/znp.2022.58.3079Ключові слова:
бетон, арматура, залізобетон, розрахунковий опір, , розрахунокАнотація
The paper presents the simplified deformation model for the section analysis of reinforced concrete members, which is considered as composite material formed of concrete and reinforcement. On this basis, it is proposed to use the design strength of reinforced concrete. This allows to reduce the section analysis of reinforced concrete members to the methodology of calculations introduced in the classical “strength of materials”, which contributes to a significant simplification and acceleration of the design process of both single members and structures in general. This approach to the section analysis of reinforced concrete members makes it universal for all deformation types of reinforced concrete members. The paper demonstrates and confirms the possibility of using the developed methodology in the bearing capacity calculations of bended reinforced concrete members.
Посилання
Nilson H. (1968). Nonlinear Analysis of Reinforced Concrete by the Finite Element Method. ACI Journal Proceedings, 65(9), 757-766
doi.org/10.14359/7510 DOI: https://doi.org/10.14359/7510
Buyukozturk O. (1977). Nonlinear analysis of reinforced concrete structures. Computers & Structures, 7(1), 149-156
doi.org/10.1016/0045-7949(77)90069-4 DOI: https://doi.org/10.1016/0045-7949(77)90069-4
Wang T., Hsu T. (2001). Nonlinear finite element analysis of concrete structures using new constitutive models. Computers & Structures, 79(32), 2781-2791
doi.org/10.1016/S0045-7949(01)00157-2 DOI: https://doi.org/10.1016/S0045-7949(01)00157-2
Kwan A.K.H., Ho J.C.M., Pam H.J. (2002). Flexural strength and ductility of reinforced concrete beams. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 152(4), 361-369 DOI: https://doi.org/10.1680/stbu.2002.152.4.361
doi.org/10.1680/stbu.152.4.361.40817 DOI: https://doi.org/10.1680/stbu.152.4.361.40817
Kwak H.-G., Kim S.-P. (2002). Nonlinear analysis of RC beams based on moment-curvature relation. Computers & Structures, 80(7-8), 615-628
doi.org/10.1016/S0045-7949(02)00030-5 DOI: https://doi.org/10.1016/S0045-7949(02)00030-5
Ho J.C.M., Kwan A.K.H., Pam H.J. (2003). Theoretical analysis of post‐peak flexural behaviour of normal‐ and high‐strength concrete beams. The structural design of tall and special buildings, 12(2), 109-125
doi.org/10.1002/tal.216 DOI: https://doi.org/10.1002/tal.216
Kara I.F., Ashour A.F., Köroğlu M.A. (2015). Flexural behavior of hybrid FRP/steel reinforced concrete beams. Composite Structures, 129, 111-121 DOI: https://doi.org/10.1016/j.compstruct.2015.03.073
doi.org/10.1016/j.compstruct.2015.03.073 DOI: https://doi.org/10.1055/s-0035-1557247
Deng S., Qie Z., Wang L. (2015). Nonlinear Analysis of Reinforced Concrete Beam Bending Failure Experimentation Based on ABAQUS. Proceedings of the First International Conference on Information Sciences, Machinery, Materials and Energy. Atlantis Press.
doi.org/10.2991/icismme-15.2015.88 DOI: https://doi.org/10.2991/icismme-15.2015.88
Wu Yu-Fei (2016). Theorems for Flexural Design of RC Members. Journal of Structural Eng. 142(5), 174-193
doi.org/10.1061/(ASCE)ST.1943-541X.0001454 DOI: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001454
Dere Yu., Koroglu M.A. (2017). Nonlinear FE Modeling of Reinforced Concrete. International Journal of Structural and Civil Engineering Research, 6(1),71-74
doi.org/10.18178/ijscer.6.1.71-74 DOI: https://doi.org/10.18178/ijscer.6.1.71-74
Earij A., Alfano G., Cashell K., Zhou X. (2017). Nonlinear three–dimensional finite–element modelling of reinforced–concrete beams: Computational challenges and experimental validation. Engineering Failure Analysis, 82, 92-115 DOI: https://doi.org/10.1016/j.engfailanal.2017.08.025
doi.org/10.1016/j.engfailanal.2017.08.025 DOI: https://doi.org/10.1088/1475-7516/2017/08/025
Pavlikov A., Kochkarev D., Harkava O. (2019). Calculation of reinforced concrete members strength by new concept. CONCRETE. Innovations in Materials, Design and Structures: Proceedings of the fib Symposium 2019 held in Kraków (Poland 27-29 May 2019), 820-827
Pavlikov A., Kochkarev D., Harkava O. (2020). Analysis of Eccentrically Loaded Members of Circular Cross Section by Nonlinear Deformation Model. Proceedings of the 2nd International Conference on Building Innovations. ICBI 2019. Lecture Notes in Civil Engineering, 73, 171-181
doi.org/10.1007/978-3-030-42939-3_19 DOI: https://doi.org/10.1007/978-3-030-42939-3_19
Kochkarev D.V. (2015). Nonlinear resistance of reinforced concrete elements and structures to force effects. Rivne: O. Zen
Pavlikov A.M., Kochkarev D.V. (2019). Reinforced concrete structures: practical methods of calculations and construction. Poltava: LLC "ASMI"
ДСТУ-Н Б EN 1992-1-1:2010. Eurocode-2 (2012).
Design of reinforced concrete structures. Part 1-1. General rules and regulations for buildings. Kyiv: Ministry of Regional Development of Ukraine