Civil building frame-struts steel carcass optimization by efforts regulation

Authors

DOI:

https://doi.org/10.26906/znp.2020.54.2269

Keywords:

civil building, frame-struts steel carcass, design scheme optimization, internal forces regulation

Abstract

With steel structures help it is possible to construct buildings with individual dimensions and different functions, using typical design solutions. The increase in the load-bearing building structures unification level is facilitated by the use of the same transverse frames, which are installed with an equal step. It is possible to ensure the frame stiffness in its own plane by installing struts between the column and the beam. In this case, the crossbar must be calculated as a beam on the hinged supports on the frame columns and on the intermediate elastic supports with a given predetermined stiffness on the struts. By adjusting the struts stiffness and their installation scheme, it is possible to adjust and optimize the stress along the length of the crossbar

 

References

. Pavlikov A.M., Mykytenko S.M., Hasenko A.V. (2018). Effective structural system for the construction of affordable housing. International Journal of Engineering & Technology, 7 (3.2), 291-298.

doi.org/10.14419/ijet.v7i3.2.14422 DOI: https://doi.org/10.14419/ijet.v7i3.2.14422

. Nilov A.A., Permyakov V.O., Shymanovs’kyy O.V., Bilyk S.I., Lavrinenko L.I., Byelov I.D., & Volodymyr-s’kij V.O. (2010). Metal structures. Kyiv: Steel.

. Celik T. & Kamali S. (2018). Multidimensional Comparison of Lightweight Steel and Reinforced Concrete Structures. Tehnički vjesnik, 25 (4), 1234-1242.

doi.org/10.17559/TV-20160901185826 DOI: https://doi.org/10.17559/TV-20160901185826

. Hoholʹ M.V. (2014). Methodology and algorithm of combined metal structures rational design. Metal structures. 20 (1), 29-43.

. Hudz S., Storozhenko L., Gasii G., & Hasii O. (2020). Features of Operation and Design of Steel Sloping Roof. Proc. of the 2nd Intern. Conf. on Building Innovations.

doi.org/10.1007/978-3-030-42939-3_8 DOI: https://doi.org/10.1007/978-3-030-42939-3_8

. Jorquera-Lucerga J.J. (2018). Form-Finding of Funicular Geometries in Spatial Arch Bridges through Simplified Force Density Method. J. Applied Sciences, 8 (12), 2553.

doi.org/10.3390/app8122553 DOI: https://doi.org/10.3390/app8122553

. Semko O.V., Hasenko A.V., Kyrychenko V.V. & Sirobaba V.O. (2020). The rational parameters of the civil building steel frame with struts. Part of the Lecture Notes in Civil Engineering book series, 73, 235-243. DOI: https://doi.org/10.1007/978-3-030-42939-3_25

. Cai M., Yu J., & Jiang X. (2018). Stress and Strength Analysis of Non-Right Angle H-section Beam. Periodica Polytechnica Civil Engineering, 62 (3), 612-619.

doi.org/10.3311/PPci.11280 DOI: https://doi.org/10.3311/PPci.11280

. Semko О.V., Hasenko A.V., Fenko O.G., J Godwin Emmanuel B., & Dariienko V.V. (2020). Architectural and constructive decisions of a triangular reinforced concrete arch with a self-stressed steel brace. Центральноукраїнський науковий вісник: Технічні науки, 3 (34), 209-217. DOI: https://doi.org/10.32515/2664-262X.2020.3(34).209-217

doi.org/10.32515/2664-262X.2020.3(34).209-217 DOI: https://doi.org/10.1007/s40290-020-00337-w

. Hasenko A.V., Yurko I.A., Yurko L.V. & Hasenko L.V. (2018). Finite-element calculation of off-center-compressed rods in the design of engineering structures reinforced concrete. Bridges and tunnels: research theory, practice, 13, 4-11.

doi.org/10.15802/bttrp2018/151059 DOI: https://doi.org/10.15802/bttrp2018/151059

. Hasenko A.V. Pihulʹ O.V., & Mahan I.V. (2010). Modeling of stress-strain state of capitalless units of monolithic reinforced concrete floor with reinforced concrete columns. Bulletin of SNAU, 11, 53-60.

. Farenyuk G., Filonenko O. & Datsenko V. (2018). Research on Calculation Methods of Building Envelope Thermal Characteristics. International Journal of Engineering & Technology, 8 (4.8), 97-102.

doi.org/10.14419/ijet.v7i4.8.27221 DOI: https://doi.org/10.14419/ijet.v7i4.8.27221

. Kurdi, Budiono B., Moestopo M., Kusumastuti D. & Muslih M.R. (2017). Residual stress effect on link element of the eccentrically braced frame. Journal of Constructional Steel Research, 128, 397-404. DOI: https://doi.org/10.1016/j.jcsr.2016.09.006

doi.org/10.1016/j.jcsr.2016.09.006 DOI: https://doi.org/10.1088/1475-7516/2016/09/006

. Kim M., Park H., Han M., & Choi B.J. (2017). Experimental evaluation of bending-moment performance about steel plate-concrete structures with mechanical splice. Journal of Constructional Steel Research, 128, 362-370. DOI: https://doi.org/10.1016/j.jcsr.2016.09.007

doi.org/10.1016/j.jcsr.2016.09.007 DOI: https://doi.org/10.1088/1475-7516/2016/09/007

. Biegus A. (2015). Trapezoidal sheet as a bracing preventing flat trusses from out-of-plane buckling. Archives of Civil and Mechanical Engineering. 15 (3), 735-741. DOI: https://doi.org/10.1016/j.acme.2014.08.007

doi.org/10.1016/j.acme.2014.08.007 DOI: https://doi.org/10.15381/pc.v10i0.9104

Downloads

Published

2020-12-30

How to Cite

Semko, O., Hasenko, A., Filonenko, O., & Mahas, N. (2020). Civil building frame-struts steel carcass optimization by efforts regulation. Academic Journal Industrial Machine Building Civil Engineering, 1(54), 47–54. https://doi.org/10.26906/znp.2020.54.2269

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 > >> 

You may also start an advanced similarity search for this article.