Формування багатофункціональних наношаруватих оксидних РЗЕ-вмісних матеріалів з використанням нітратних прекурсорів
Анотація
Комплексним системним дослідженням взаємодії структурних компонентів у системах нітратів рідкісноземельних і ІА, ІІА
елементів періодичної системи встановлено утворення цілого класу лужних координаційних нітратів лантаноїдів, які син-
тезовані в монокристалічному виді. Їхній склад, атомно-кристалічну будову, форми координаційних поліедрів Ln, типи ко-
ординації лігандів, ряд їхніх властивостей досліджено з використанням комплексу фізико-хімічних методів. З’ясовані
об’єктивні закономірності поведінки цього типу сполук поглиблюють розуміння про: хімічні і фізичні властивості Ln, їх
комплесоутворюючу здатність; можливість утворення й існування в аналогічних системах асоційованих нових фаз і їх
стійкість; вплив природи лантаноїдів і лужних металів, магнію на структуру комплексних аніонів і сполук у цілому; інди-
відуальність Ln комплексів; існування ізотипних за складом і структурою груп сполук за природними рядами лантаноїдів і
лужних металів; роль NO3
-
-груп у стереохімії цього класу нітратів; роль води у формуванні найближчого оточення іонів
Ln3+- комплексоутворювачів. Одержані дані є основою для виявлення, ідентифікації, контролю утворюваних фаз, визна-
чення елементного складу і вмісту проб, проведення аналізу і порівняння фазового стану об’єктів у підготовчих стадіях
перероблення в інноваційних технологіях з використанням нітратних попередників елементів різної електронної структури
і різними комбінованими способами їх активації, встановлення технологічно-функціональних залежностей, керованого
модифікування властивостей продуктів синтезу. На перспективність цих прекурсорів указують існування достатньо пред-
ставницького класу комплексних нітратів лантаноїдів, виявлення серед них ізотипних за складом і структурою груп сполук
представників Y, La – Lu; Li – Cs, прояв комплексу цінних у технологічному відношенні притаманних їм властивостей.
Посилання
Sr3Ti2O7
and its structure. Acta Crystallogr, 11(1), 54-55.
2. Dion, M., Ganne, M. & Tournoux, M. (1981). Nouvelles
familles de phases MIMII
2Nb3O10 a feuillets «perovskites».
Mater. Res. Bull., 16(1), 1429-1435.
3. Lagaly, G. (1986). Interaction of alkylamines with different
types of layered compounds. Solid State Ionics, 22,
43.
4. Machida, M., Miyazaki, K., Matsushima, S. et al.
(2003). Photocatalytic properties of layered perovskite tantalates,
MLnTa2O7
(M = Cs, Rb, Na, and H; Ln = La, Pr, Nd,
and Sm). J. Mater. Chem., 13(6), 1433.
5. Silyukov, O., Chislov, M., Burovikhina, A. et al. (2012).
Thermogravimetry study of ion exchange and hydration in
layered oxide materials. J. Therm. Anal. Calorim., 110(1),
187-192.
6. Gopalakrishnan, J., Sivakumar, T., Ramesha, K. et al.
(2000). Transformations of Ruddlesden-Popper oxides to
new layered perovskite oxides by metathesis reactions.
Chem. Phys., 9, 6237-6241.
7. Ok, K.-M., Kim, K.-L., Kim, T.-W., Kim, D.-H. et al.
(2013). Preparation and characterization of La0.8Sr0.2Ga0.8Mg
0.1Co0.1O3−δ electrolyte using glycine-nitrate process. J. of the
Korean Crystal Growth and Crystal Techn., 23(1), 37-43.
8. Varma, A., Mukasyan, A.S., Rogachev, A.S. et al.
(2016). Solution Combustion Synthesis of Nanoscale Materials.
American Chemical Society. Chem. Rev., 116, 14493-
14586.
9. Gopalakrishnan, J. & Bhat, V. (1987). A2Ln2Ti3O10
(A = potassium or rubidium; Ln = lanthanum or rare earth): a
new series of layered perovskites exhibiting ion exchange.
Inorg. Chem., 26, 4299-4301.
10. Kato, M., Kajita, T., Hanakago, R. et al. (2006). Search
for new superconductors by the Liintercalation into layered
perovskites. Phys. C Supercond, 445, 26-30.
11. Thangadurai, V., Subbanna, G. N. & Gopalakrishnan,
J. (1998). Ln2Ti2O7
(Ln = La, Nd, Sm, Gd): a novel series
of defective Ruddlesden-Popper phases formed by topotactic
dehydration of HLnTiO4
. J. Chem. Commun., 7,
1299-1300.
12. Ranmohotti, K.G.S., Josepha, E., Choi, J. et al. (2011).
Topochemical manipulation of perovskites: low-temperature
reaction strategies for directing structure and properties. Adv.
Mater., 23(4), 442-460.
13. Sivakumar, T., Lofland, S., Ramanujachary, K. et al.
(2004). Transforming n=1 members of the Ruddlesden–
Popper phases to a n=3 member through metathesis: synthesis
of a new layered perovskite, Ca2La2CuTi2O10. J. Solid
State Chem., 177(7), 2635-2638.
14. Toda, K. & Sato, M. (1996). Synthesis and structure
determination of new layered perovskite compounds,
ALaTa2O7
and ACa2Ta3010 (A = Rb, Li). J. Mater. Chem.,
6(6), 1067-1071.
15. Schaak, R.E. & Mallouk, T.E. (2002). Perovskites by
Design: A Toolbox of Solid-State Reactions. Chem. Mater.,
14(4), 1455-1471.
https://doi.org/10.1021/cm010689m
16. Yakovleva, I.S. & Isupova, L.A. (2012). A method of
obtaining perovskites. Patent RU 2440292 С2, Moscow.
17. Kuznetsov, B.M. (1999). Features of the physicochemical
behavior of oxide systems under simultaneous
high-temperature and ultrasonic exposure. Moscow:
Science.
18. Sharma, P., Lotey, G.S., Singh, S. & Verma, N.K.
(2011). Solution-combustion: the versatile route to synthesize
silver nanoparticles. J. of Nanoparticle Research, 13(6),
2553-2561.
19. Li, J., Wang, Z., Yang, X. et al. (2007). Evaluatethe
Pyrolysis Pathway of Glycine and Glycylglycine by
TG-FTIR. J. Anal. Appl. Pyrolysis, 80, 247-253.
20. Kudrenko, E.O., Shmytko, I.M. & Strukova, G.K.
(2008). The structure of precursors of complex REE oxides
obtained by solvent thermolysis. Solid State Physics, 5 (50),
924-930.
21. Anosov, V.Ya., Ozerova, M.I. & Fialkov, Yu.Ya.
(1976). Fundamentals of physico-chemical analysis.
Moscow: Science.
22. Goroshchenko, Ya.G. (1978). Physicochemical
analysis of homogeneous and heterogeneous systems. Kiev:
Naukova Dumka.
23. Storozhenko, D.O., Dryuchko, O.G., Bunyakina, N.V.
et al. (2015). Phase Formation in REE-Containing WaterSalt
Systems at the Preparatory Stages of the Multicomponent
Oxide Functional Materials Formation. Innovations in
Corrosion and Materials Science, 5(2), 80-84.
24. Storozhenko, D.O., Dryuchko, O.G., Bunyakina, N.V.
et al. (2013). Chemical interaction and phase formation in
sulfates, nitrate, chloride water-salt systems of neodymium
and alkali metals. Bulletin of NTU «KPI», 57 (1030), 121-
126.
25. Bunyakina, N.V., Storozhenko, D.A., Shevchuk, V.G.
et al. (1996). Solubility polytherm of the Mg(NO3
)2 –
Nd(NO3
)3
– H2O system. Journal of Inorganic Chemistry,
41 (9), 1577-1579.
26. Dryuchko O.G., Storozhenko D.O., Bunyakina N.V.,
Korobko B.O., Ivanitskaya I.O. & Pashchenko A.M. (2016).
Features of transformations in REE-containing systems of
nitrate precursors in preparatory processes of formation of
perovskite-like oxide materials. Bulletin of NTU «KPI», 22
(1194), 63-71.
27. Kogan V.B., Ogorodnikov S.K. & Kafarov V.V.
(1970). Solubility Guide. T.3. Triple and multicomponent
systems formed by inorganic substances. Leningrad: Science.
28. Vigdorchik, A.G., Malinovsky, Yu.A., Dryuchko, A.G.
et al. (1992). Low-temperature X-ray diffraction study of potassium-neodymium
nitrates K3
[Nd2
(NO3
)9
] and
K2
[Nd(NO3
)5
(H2O)2
]. Crystallography, 4-37, 882-888.
29. Dryuchko, O.G., Storozhenko, D.O., Bunyakina, N.V.
et al. (2018). Physicochemical characterization of REE coordination
nitrates and alkali metals˗precursors of oxide multifunctional
materials. Bulletin of NTU «KPI», Series:
Chemistry, Chemical Technology and Ecology, 39 (1315),
3-13.
http://dx.doi.org/10.20998/2079-0821.2018.39.01
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.