ГРУПОВЕ ЗАСТОСУВАННЯ БЕЗПІЛОТНИХ ЛІТАЛЬНИХ АПАРАТІВ ТА НАЗЕМНИХ РОБОТИЗОВАНИХ ЗАСОБІВ: ВИКЛИКИ, РІШЕННЯ ТА ПЕРСПЕКТИВИ ВПРОВАДЖЕННЯ ХМАРНО-АГЕНТНИХ ТЕХНОЛОГІЙ
DOI:
https://doi.org/10.26906/SUNZ.2024.4.143Ключові слова:
безпілотний літальний апарат, безпілотні наземні транспортні засоби, групове застосування, огляд досліджень, сучасні технологіїАнотація
Застосування безпілотних літальних апаратів (БПЛА) та наземні роботизовані засоби (НРЗ) э актуальним трендом сьогодення. При цьому їх поодиноке застосування переходить до групового застосування, коли необхідно забезпечувати комунікацій та оптимальне використання ресурсів. Предметом статті є процеси групового застосування безпілотних літальних і наземних апаратів. Мета статті – проведення всебічного аналізу основних сфер застосування БПЛА і НРЗ, визначення методів оптимізації завдань для груп цих пристроїв, а також оцінка доцільності та перспектив впровадження хмарних технологій для розподілу завдань та оптимізації маршрутів. Врезультаті роботи визначено, що найбільш актуальними темами в галузі БПЛА та НРЗ є застосування хмарних технологій, інтеграція НРЗ у системи з БПЛА, розробка систем попередження пожеж та застосування методів машинного навчання. Вказані методи та технології активно застосовуються при вирішенні складних задач планування маршрутів та розподілу завдань у групах БПЛА та НРЗ. Але при цьому, недостатньо уваги приділяється впливу різноманітних погодних умов на роботу БПЛА та НРЗ, а також розрахунку надійності місій. Ці аспекти є критично важливими для практичного застосування безпілотних систем, особливо в складних умовах та при виконанні відповідальних завдань. розробці адаптивних алгоритмів, здатних враховувати динамічні зміни навколишнього середовища, та на створенні комплексних моделей оцінки надійності місій з урахуванням як технічних характеристик пристроїв, так і зовнішніх факторів. Напрямок подальших досліджень полягає у розробці адаптивних алгоритмів, здатних враховувати динамічні зміни навколишнього середовища, та створенні комплексних моделей оцінки надійності місій з урахуванням як технічних характеристик пристроїв, так і зовнішніх факторів.Завантаження
Посилання
Sun, Y., Fesenko, H., Kharchenko, V., Zhong, L., Kliushnikov, I., Illiashenko, O., Sachenko, A. UAV and IoT-Based Systems for the Monitoring of Industrial Facilities Using Digital Twins: Methodology, Reliability Models, and Application. Sensors, vol. 22, iss.17, iss. 17, article no. 6444, pp.1–31, 2022. https://doi.org/10.3390/s22176444.
. Kliushnikov, I. M., Fesenko, H. V., Kharchenko, V. S. Scheduling UAV Fleets for the Persistent Operation of UAV-Enabled Wireless Networks During NPP Monitoring. Radioelectronic and Computer Systems, vol. 1, iss.93, pp. 29–36, 2020. https://doi.org/10.32620/reks.2020.1.03.
A. Puente-Castro, D. Rivero, A. Pazos, E. Fernandez-Blanco. A Review of Artificial Intelligence Applied to Path Planning in UAV Swarms. Neural Computing and Applications, vol. 34, no. 1, 2022, pp. 153–70. https://doi.org/10.1007/s00521-021-06569-4.
M. Hooshyar, Y.-M. Huang, Meta-Heuristic Algorithms in UAV Path Planning Optimization: A Systematic Review (2018–2022). Drones, vol. 7, no. 12, 2023, p. 687. https://doi.org/10.3390/drones7120687.
I. Kliushnikov, V. Kharchenko, I. Cherepnov, O. Morozova, S. Rudakov, O. Kompaniiets. Structural-Parametric Synthesis of Systems, Services and Technologies (DESSERT), Athens, Greece, 2023, pp. 1-7. https://doi.org/10.1109/DESSERT61349.2023.10416509.
H. Chung, S. Oh, D. H. Shim, S. S. Sastry. Toward Robotic Sensor Webs: Algorithms, Systems, and Experiments. Proceedings of the IEEE, vol. 99, no. 9, 2011, pp. 1562–86. https://doi.org/10.1109/JPROC.2011.2158598.
E. Al. M. Mohammed Thaha. An Aerial Robotics Investigation into the Stability, Coordination, and Movement of Strategies for Directing Swarm and Formation of Autonomous MAVs and Diverse Groups of Driverless Vehicles (UGVs). International Journal on Recent and Innovation Trends in Computing and Communication, vol. 11, no. 3, 2023, pp. 301–04. https://doi.org/10.17762/ijritcc.v11i3.8908.
F. Aljalaud, H. Kurdi, K. Youcef-Toumi. Bio-Inspired Multi-UAV Path Planning Heuristics: A Review. Mathematics, vol. 11, no. 10, 2023, p. 2356. https://doi.org/10.3390/math11102356
F. Miao et al. Optimizing UAV Path Planning in Maritime Emergency Transportation: A Novel Multi-Strategy White Shark Optimizer. Journal of Marine Science and Engineering, vol. 12, no. 7, July 2024, p. 1207. https://doi.org/10.3390/jmse12071207
Y. Gong, K. Chen, T. Niu, Y. Liu. Gong, Yiguang, et al. Grid-Based Coverage Path Planning with NFZ Avoidance for UAV Using Parallel Self-Adaptive Ant Colony Optimization Algorithm in Cloud IoT. Journal of Cloud Computing, vol. 11, no. 1, 2022, p. 29. https://doi.org/10.1186/s13677-022-00298-2
H. Tang, Q. Zhu, B. Qin, R. Song, Z. Li. UAV Path Planning Based on Third-Party Risk Modeling. Scientific Reports, vol. 13, no. 1, 2023, p. 22259. https://doi.org/10.1038/s41598-023-49396-4
J. Gao, Y. Zheng, K. Ni, Q. Mei, B. Hao, and L. Zheng. Fast Path Planning for Firefighting UAV Based on A-Star Algorithm. Journal of Physics: Conference Series, vol. 2029, no. 1, 2021, p. 012103. https://doi.org/10.1088/1742-6596/2029/1/012103
L. Li, Z. Wang, J. Zhu, S. Ma. Smartphone-Based Task Scheduling in UAV Networks for Disaster Relief. Electronics, vol. 13, no. 15, 2024, p. 2903. https://doi.org/10.3390/electronics13152903
M. El Debeiki, S. Al-Rubaye, A. Perrusquía, C. Conrad, J. A. Flores-Campos. An Advanced Path Planning and UAV Relay System: Enhancing Connectivity in Rural Environments. Future Internet, vol. 16, no. 3, 2024, p. 89. https://doi.org/10.3390/fi16030089
C. Gao, X. Wang, X. Chen, B. M. Chen. A Hierarchical Multi-UAV Cooperative Framework for Infrastructure Inspection and Reconstruction. Control Theory and Technology, vol. 22, no. 3, 2024, pp. 394–405. https://doi.org/10.1007/s11768-024-00202-0
W. Harris, S. Tseng, T. Viso, M. Weissman, C.-K. Ngan. Swarm Intelligence Path-Planning Pipeline and Algorithms for UAVs: Simulation, Analysis and Recommendation. Proceedings of the 26th International Conference on Enterprise Information Systems, SCITEPRESS - Science and Technology Publications, 2024, pp. 747–58. https://doi.org/10.5220/0012686000003690
Y. Shi, Y. Liu, B. Ju, Z. Wang, X. Du. Multi-UAV Cooperative Reconnaissance Mission Planning Novel Method under MultiRadar Detection. Science Progress, vol. 105, no. 2, 2022, p. 003685042211037. https://doi.org/10.1177/00368504221103785
Y. Yu, S. Lee. Efficient Multi-UAV Path Planning for Collaborative Area Search Operations. Applied Sciences, vol. 13, no. 15, 2023, p. 8728. https://doi.org/10.3390/app13158728
X. Liu, Y. Su, Y. Wu, Y. Guo. Multi-Conflict-Based Optimal Algorithm for Multi-UAV Cooperative Path Planning. Drones, vol. 7, no. 3, 2023, p. 217. https://doi.org/10.3390/drones7030217
R. Yuhang, Z. Liang. An Adaptive Evolutionary Multi-Objective Estimation of Distribution Algorithm and Its Application to Multi-UAV Path Planning. IEEE Access, vol. 11, 2023, pp. 50038–51. https://doi.org/10.1109/ACCESS.2023.3270297
B. Qiu, X. Li, and X. Li. Joint Offloading Decision and Trajectory Optimization for Multi-UAV-Assisted Mobile Edge Computing System. Wireless Network, 2024. https://doi.org/10.21203/rs.3.rs-3802943/v1.
Y. Yu, S. Lee. Multi-UAV Coverage Path Assignment Algorithm Considering Flight Time and Energy Consumption. IEEE Access, vol. 12, 2024, pp. 26150–62. https://doi.org/10.1109/ACCESS.2024.3366998
J. Fu, G. Sun, J. Liu, W. Yao, L. Wu. On Hierarchical Multi-UAV Dubins Traveling Salesman Problem Paths in a Complex Obstacle Environment. IEEE Transactions on Cybernetics, vol. 54, no. 1, 2024, pp. 123–35. https://doi.org/10.1109/TCYB.2023.3265926
G. Tang, T. Xiao, P. Du, P. Zhang, K. Liu, L. Tan. Improved PSO-Based Two-Phase Logistics UAV Path Planning under Dynamic Demand and Wind Conditions. Drones, vol. 8, no. 8, 2024, p. 356. https://doi.org/10.3390/drones8080356
M. S. Mondal et al. Cooperative Multi-Agent Planning Framework for Fuel Constrained UAV-UGV Routing Problem. Preprint arXiv, 2023. https://doi.org/10.48550/ARXIV.2309.03397
Z. Li, W. Zhao, C. Liu. Completion Time Minimization for UAV-UGV-Enabled Data Collection. Sensors, vol. 22, no. 15, 2022, p. 5839. https://doi.org/10.3390/s22155839
J. Ni, M. Tang, Y. Chen, W. Cao. An Improved Cooperative Control Method for Hybrid Unmanned Aerial-Ground System in Multitasks. International Journal of Aerospace Engineering, vol. 2020, 2020, pp. 1–14. https://doi.org/10.1155/2020/9429108
T. Ma, P. Lu, F. Deng, K. Geng. Air–Ground Collaborative Multi-Target Detection Task Assignment and Path Planning Optimization. Drones, vol. 8, no. 3, 2024, p. 110. https://doi.org/10.3390/drones8030110
Q. Wu, Z. Geng, Y. Ren, Q. Feng, J. Zhong. Multi-UAV Redeployment Optimization Based on Multi-Agent Deep Reinforcement Learning Oriented to Swarm Performance Restoration. Sensors, vol. 23, no. 23, Nov. 2023, p. 9484. https://doi.org/10.3390/s23239484
X. Zhao, R. Yang, L. Zhong, Z. Hou. Multi-UAV Path Planning and Following Based on Multi-Agent Reinforcement Learning. Drones, vol. 8, no. 1, 2024, p. 18. https://doi.org/10.3390/drones8010018
M. Yang, G. Liu, Z. Zhou, and J. Wang. Partially Observable Mean Field Multi-Agent Reinforcement Learning Based on Graph Attention Network for UAV Swarms. Drones, vol. 7, no. 7, 2023, p. 476. https://doi.org/10.3390/drones7070476
S. Vyas, S. S. Verma, A. Prasad. Study of UAV Management Using Cloud-Based Systems. Deep Learning Technologies for the Sustainable Development Goals, edited by Virender Kadyan et al., Springer Nature Singapore, 2023, pp. 97–110. https://doi.org/10.1007/978-981-19-5723-9_7
M. Aldossary. Optimizing Task Offloading for Collaborative Unmanned Aerial Vehicles (UAVs) in Fog–Cloud Computing Environments. IEEE Access, vol. 12, 2024, pp. 74698–710 https://doi.org/10.1109/ACCESS.2024.3405566
L. Matlekovic, F. Juric, P. Schneider-Kamp. Microservices for Autonomous UAV Inspection with UAV Simulation as a Service. Simulation Modelling Practice and Theory, vol. 119, 2022, p. 102548. https://doi.org/10.1016/j.simpat.2022.102548
A. S. Seisa, S. G. Satpute, B. Lindqvist, G. Nikolakopoulos. An Edge-Based Architecture for Offloading Model Predictive Control for UAVs. Robotics, vol. 11, no. 4, 2022, p. 80. https://doi.org/10.3390/robotics11040080
F. A. Silva et al. Aerial Computing: Enhancing Mobile Cloud Computing with Unmanned Aerial Vehicles as Data Bridges—A Markov Chain Based Dependability Quantification. ICT Express, vol. 10, no. 2, 2024, pp. 406–11. https://doi.org/10.1016/j.icte.2023.10.002
M. B. Bezziane et al. Game Theory-Based UAV-Cloud for Service Selection Architecture in Flying Ad Hoc Networks. IEEE Open Journal of Vehicular Technology, 2024, pp. 1–20. https://doi.org/10.1109/OJVT.2024.3430818
S. Poghosyan et al. Cloud-Based Mathematical Models for Self-Organizing Swarms of UAVs: Design and Analysis. Drone Systems and Applications, vol. 12, 2024, pp. 1–12. https://doi.org/10.1139/dsa-2023-0039
Y. Zhou, H. Ge, B. Ma, S. Zhang, J. Huang. Collaborative Task Offloading and Resource Allocation with Hybrid Energy Supply for UAV-Assisted Multi-Clouds. Journal of Cloud Computing, vol. 11, no. 1, 2022, p. 42. https://doi.org/10.1186/s13677-022-00317-2
M. Itkin, M. Kim, Y. Park. Development of Cloud-Based UAV Monitoring and Management System. Sensors, vol. 16, no. 11, 2016, p. 1913. https://doi.org/10.3390/s16111913
H. A. Alharbi, M. Aldossary, J. Almutairi, I. A. Elgendy. Energy-Aware and Secure Task Offloading for Multi-Tier EdgeCloud Computing Systems. Sensors, vol. 23, no. 6, 2023, p. 3254. https://doi.org/10.3390/s23063254
J. Wang, P. Jiang, J. Qi. A Planning Method for Operational Test of UAV Swarm Based on Mission Reliability. Computer Modeling in Engineering & Sciences, vol. 140, no. 2, 2024, pp. 1889–918. https://doi.org/10.32604/cmes.2024.049813.
I. Ruban, V. Lebediev. Method for Determining the Rational Number of UAV Flotilla Taking Into Account the Reliability of the Aircraft. Innovative technologies and scientific solutions for industries, no. 1 (23), 2023, pp. 108–14. https://doi.org/10.30837/ITSSI.2023.23.108.
Y. Wang, F. Gao, M. Li. Probabilistic Path Planning for UAVs in Forest Fire Monitoring: Enhancing Patrol Efficiency through Risk Assessment. Fire, vol. 7, no. 7, 2024, p. 254. https://doi.org/10.3390/fire7070254
Y. Xu, J. Li, F. Zhang. A UAV-Based Forest Fire Patrol Path Planning Strategy. Forests, vol. 13, no. 11, 2022, p. 1952. https://doi.org/10.3390/f13111952.
J. John and S. Sundaram. Genetic Algorithm-Based Routing and Scheduling for Wildfire Suppression Using a Team of UAVs. Preprint arXiv, 2024. https://doi.org/10.48550/ARXIV.2407.19162.
X. Yan, R. Chen. Application Strategy of Unmanned Aerial Vehicle Swarms in Forest Fire Detection Based on the Fusion of Particle Swarm Optimization and Artificial Bee Colony Algorithm. Applied Sciences, vol. 14, no. 11, 2024, p. 4937. https://doi.org/10.3390/app14114937.
K. Takahashi, K. Aida, T. Tanjo, J. Sun. A Portable Load Balancer for Kubernetes Cluster. Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region, ACM, 2018, pp. 222–231. https://doi.org/10.1145/3149457.3149473.