APPLICATION OF THE APPARATUS FOR ANALYSIS AND PROCESSING OF DATA BITS IN METHODS OF CLASSIFICATION OF IMAGES ON A SET OF KEY POINTS
DOI:
https://doi.org/10.26906/SUNZ.2018.2.063Keywords:
computer vision, structural recognition, special image points, BRISK detector, special point descriptors, binary analysis method, distance matrix, image database, software modeling, criterion of correct classificationAbstract
The problem of structural recognition of visual objects based on descriptions in the form of a set of key points of the image was solved. A method is proposed for binary analysis of sets of description descriptors for the formation of class centers with the aim of classifying them within a given base of standards. Criteria for evaluating the effectiveness of classification are discussed. The software modeling and research of the method was carried out in comparison with the median centers, the efficiency of the developed method for the applied image database was confirmed.Downloads
References
Гороховатский В.А. Исследование результативности структурных методов классификации изображений с применением кластерной модели данных / В.А. Гороховатский, Е.П. Путятин, В.С. Столяров // Радиоэлек- троника, информатика, управление. – 2017. – №3 (42). – C. 78–85.
Гороховатский В.А. Структурный анализ и интеллектуальная обработка данных в компьютерном зрении / В.А. Гороховатский. – Х.: Компания СМИТ, 2014. – 316 с.
Duda R.O. Pattern classification / Duda R.O., Hart P.E., Stork D.G. – 2ed., Wiley, 2000.–738p.
Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary Bradski. ORB: an efficient alternative to SIFT or SURF. – Computer Vision (ICCV), IEEE International Conference on IEEE, pp. 2564 – 2571, 2011.
Stefan Leutenegger, Margarita Chli, Roland Y. Siegwart. BRISK: Binary Robust Invariant Scalable Keypoints. – Computer Vision (ICCV), pp. 2548 – 2555, 2011.
Gorokhovatsky V.A. Efficient Estimation of Visual Object Relevance during Recognition through their Vector Descriptions / V.A. Gorokhovatsky // Telecommunications and Radio Engineering. – 2016, Vol. 75, No 14. – P. 1271–1283.
Осовский С. Нейронные сети для обработки информации / С. Осовский. – М.: Финансы и статистика, 2002. – 344 с.
Кохонен Т. Самоорганизующиеся карты / Т. Кохонен. – М.: БИНОМ. Лаборатория знаний, 2013. – 655 с.
Shapiro, L. and Stockman, G., (2001), Computer vision, Prentice Hall. – 625 p.
OpenCV Open Source Computer Vision. [Электронный ресурс]. – Режим доступа: https://docs.opencv.org/master/index.html, свободный. – За-гл. с экрана.
Солонина А.И. Алгоритмы и процессоры цифровой обработки сигналов / А.И. Солонина, Д.А. Улахович, Л.А. Яковлев. – СПб. : БХВ-Петербург, 2001. – 464 с.