PACKAGING POLYHEDRONS INTO A CONVENIENT CONTAINER OF MINIMUM VOLUME

Authors

  • Yu. E. Stoyan
  • A. V. Pankratov
  • Т. Ye. Romanova

DOI:

https://doi.org/10.26906/SUNZ.2018.2.048

Keywords:

packing, polyhedron, continuous rotation, convex container, mathematical modeling, nonlinear optimization

Abstract

The problem of packing a given set of arbitrary polyhedron into a convex container of minimal volume is considered. Continuous rotations and translations of polyhedron are allowed. Minimum distances between polyhedron and balance constraints are taken into account. A mathematical model is constructed in the form of a non-linear programming problem using phifunctions and quasi-phi-functions. An effective method of solution is proposed that includes a fast algorithm for finding an acceptable starting point and a procedure for local optimization. The advantage of the proposed method is confirmed by the results of numerical experiments.

Downloads

Download data is not yet available.

References

Bennell, J., Oliveira, J. (2008). The geometry of packing problems:A tutorial.European Journal of Operational packing problems:A tutorial.European Journal of Operational Research184:397–415.

Gomes, A. Miguel Irregular Packing Problems: Industrial Applications and New Directions Using Computational Geometry. (2014) Paper in special issue on “Cutting and Packing". Vol 11 | Part 1, 378-383. DOI: 10.3182/20130522-3-BR-4036.00113.

Wаscher, G., Hauner, H., Schumann, H. (2007). An improved typology of cutting and packing problems. Eur. J. Oper. Res., 183(3), 1109–1130.

Chazelle, B., Edelsbrunner, H., Guibas, L. J. (1989). The complexity of cutting complexes. Discr. & Comput. Geom., 4(2), 139–181. DOI: 10.1007/BF02187720.

Chen, E. R., Klotsa, D., Engel, M., Damasceno, P. F., Glotzer, S. C. (2014). Complexity in surfaces of densest packings for families of polyhedra. Phys Rev X 4(1), DOI:10.1103/PhysRevX.4.011024.

Galrão, R. A., Oliveira J. F., Gonçalves J. F., Lopes M. P. (2016) A container loading algorithm with static mechanical equilibrium stability constraints. Transportation Research, (Part B), 91, 565-581. DOI: 10.1016/j.trb.2016.06.003.

Smeets, B., Odenthal, T., Vanmaercke, S., Ramon, H. (2015). Polygon-based contact description for modeling arbitrary polyhedra in the Discrete Element Method. Computer Methods in Applied Mechanics and Engineering, 290, 277-289. DOI: 10.1016/j.cma.2015.03.004.

Tasios, N., Gantapara, A. P., Dijkstra M. (2014). Glassy dynamics of convex polyhedra. The Journal of Chemical Physics. 141: 224502. PMID 25494755 DOI: 10.1063/1.49029922.

Egeblad, J., Nielsen, B. K., Brazil, M. (2009). Translational packing of arbitrary polyhedra. Comp. Geom., 42(4), 269–288. DOI:10.1016/j.comgeo.2008.06.003.

Fasano, G. A. (2013). Global Optimisation point of view for non-standard packing problems. J. Glob. Optim., 55(2), 279–299. DOI: 10.1007/s10898-012-9865-8.

Torquato, S., Jiao, Y. (2009). Dense polyhedral packings: Platonic and Archimedean solids. Phys. Rev., 80, 041104. DOI: 10.1103/PhysRevE.80.041104.

Chernov, N., Stoyan, Y., Romanova, T. (2010). Mathematical model and efficient algorithms for object packing problem. Comput. Geom.: Theory and Appl., 43(9), 535–553. DOI:10.1016/j.comgeo.2009.12.003.

Fischer, K., Gärtner, B. and Kutz, M. (2003). Fast Smallest-Enclosing-Ball Computation in High Dimensions. Algorithms - ESA 2003, 2832, 630–641. DOI:10.1007/978-3- 540-39658-1_57.

Stoyan, Y., Pankratov, A., Romanova, T. (2016). Quasi phi-functions and optimal packing of ellipses. J. of Glob. Optim., 65 (2), 283–307. DOI: 10.1007/s10898-015- 0331-2.

Wachter, A., Biegler, L. T. (2006). On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program., 106 (1), 25–57. DOI: 10.1007/s10107-004-0559-y.

Stoyan, Y. G., Gil, N. I., Pankratov, A. V., et al., (2004). Packing Non-convex Polyhedra into a Parallelepiped. Technische Universitat Dresden. Mode of access: http://www.math.tu-dresden.de/~scheith/ABSTRACTS/ PREPRINTS/04-non-conv.pdf

Romanova, T., Bennell, J., Stoyan, Y., Pankratov, A. (2018) Packing of concave polyhedra with continuous rotations using nonlinear optimization. European Journal of Operational Research 268 (1), 37-53. https://doi.org/10.1016/j.ejor.2018.01.025

Панкратов, А.В., Романова, Т.Е., Стоян, Ю.Е., Чугай, А.М. (2016). Задача оптимизации упаковки многогранников в сферическом и цилиндрическом контейнерах. Eastern-European J. of Entrepr. Tech., 1/4 (79), 39–47.

Published

2018-04-11

Issue

Section

Mathematical Models and Methods