ALGORITHM SELECTION METHOD FOR IMAGE RECOGNITION

Authors

  • A. S. Svyrydov

DOI:

https://doi.org/10.26906/SUNZ.2018.1.137

Keywords:

image recognition, preprocessing, segmentation, neural networks, algorithms

Abstract

The article considers existing methods of image recognition and analyzes their shortcomings. The work stages of the methodsare examined in detail, conditions are defined under which existing preprocessing and segmentation algorithms can improve theprocess of image recognition. Based on the research, a method of selecting algorithms for such stages as pre-blocking, segmentationand recognition was proposed, which in turn would allow optimizing and speeding up the process of image recognition.

Downloads

References

C. S. A. T. D. Erhan, «Neural Information Processing Systems,» в Deep Neural Networks for Object Detection, 2013.

Linda G. Shapiro and George C. Stockman (2001): «Computer Vision», pp 279—325, New Jersey, Prentice-Hall.

Khan, H. Abdullah и M. Shamian Bin Zainal, «Efficient eyes and mouth detection algorithm using combination of viola jones and skin color pixel detection» International Journal of Engineering and Applied Sciences, № Vol. 3 № 4, 2013.

Дж. Ту, Р. Гонсалес, Математические принципы распознавания образов, Москва: «Мир» Москва, 1974.

Н. Новикова, Структурное распознавание образов, Воронеж: Издательско-полиграфический центр Воронежского государственного университета, 2006.

Форсайт Д., Понс Ж. Компьютерное зрение. Современный подход. Пер. с англ. – М. : Издательский дом «Вильямс», 2004. 928с

Шапиро Л., Стокман Дж. Компьютерное зрение. Пер. с англ. М. : Лаборатория знаний, 2006. 752с.

Published

2018-02-08