ESTIMATION OF THE STABILITY OF THE INTERNET OF THINGS NETWORK WITH THE INDICATORS OF CENTRALITY OF CONNECTIONS

Authors

  • Н. S. Semenova
  • M. V. Bartosz

Keywords:

INTERNET OF THINGS, indicators of centrality (centralization) of communications, computer network, stability, security

Abstract

Based on the results of a study of the existing vulnerabilities of computer networks INTERNET OF THINGS (IoT), the article identifies a number of promising areas for further improvement of methods and tools to ensure data security. Within the framework of one of the prospective directions, the analysis of the main indicators of the centrality of the IoT network connections was carried out. The comparability of the results of using both known and new (improved) indicators in assessing the stability of networks for malicious attacks was determined. Also, the effectiveness of using the improved indicator of Local Vector Centrality in assessing the stability of the network to inter-axial attacks was revealed.

Downloads

Download data is not yet available.

References

Rashmi V. Deshmukh. Understanding DDoS Attack & its Effect in Cloud Environment / Rashmi V. Deshmukh, Kailas K. Devadkar // Procedia Computer Science, 2015. - Tokyo, Japan. - Vol. 49. - P. 202-210.

Bot Traffic Report 2016 [Electronic resource] / Access regime: https://www.incapsula.com/blog/bot-trafficreport-2016.html.

Hackmageddon Information Security Timelines and Statistics [Electronic resource] / Access regime: http://www.hackmageddon.com/

Gartner: Start security monitoring in the public cloud [Electronic resource] /Access regime: http://www.networkworld.com/article/2167209/security/gartner--start-security-mo-nitoring-in-the-public-cloud.html.

Global DDoS Threat Landscape Q1 2016 [Electronic resource] / Access regime: https://www.incapsula.com/ddos-report/ddos-report-q1-2016.html.

Головін А. Виявлення DDoS-атак прикладного рівня шляхом використання моделі Map Reduce / А. Головін // Інформаційні технології та безпека. - К.:Ін-т спец. зв'язку та захисту інформації Нац. техн. ун-ту України "Київ. політехн. ін-т", 2015. - Том. 3, вип. 2 (5). - С. 117-124.

Jie-Hao C. DDoS defense system with test and neural network / C. Jie-Hao, Z. Ming, C. Feng-Jiao, Z. An-Di // Proceedings of the IEEE International Conference on Granular Computing, 2012. - Hangzhou, China. - P. 38-43

Shanmugam B. Improved Intrusion Detection System using Fuzzy Logic for Detecting Anamoly and Misuse type of Attacks / B. Shanmugam, N. Idris // Proceedings of the International Conference of Soft Computing and Pattern Recognition, 2009. - Malacca. - P. 212-217.

Рубан І.В. Исследование удаленных атак на распределительно вычислительные сети / І.В. Рубан, С.С. Сєров // Системи обробки інформації. - Х.: Харьковский университет Воздушных Сил им. И. Кожедуба, 2013. - Вип. 5 (112). - С. 118-120.

FuiFui Wong. A survey of trends in massive ddos attacks and cloud-based mitigations / FuiFui Wong, Cheng Xiang Tan // International Journal of Network Security & Its Applications (IJNSA), 2014. - Vol. 6, No. 3. - P. 57-71

Види DDoS-атак та алгоритми виявлення DDoS- атак типу Flood-Attack / Н.В. Багнюк, В.М. Мельник, О.В Клеха, І.А. Невідомський // Науковий журнал “Комп’ютерно-інтегровані технології: освіта, наука, виробництво”, 2015. - Луцьк. - Вип. 18. - С. 6-12

Published

2017-12-30