PRACTICAL APPLICATION AND VULNERABILITIES OF HILL CIPHER IN A MODERN CONTEXT

Authors

  • Yevhen Zhyvylo
  • Yurii Kuchma

DOI:

https://doi.org/10.26906/SUNZ.2025.4.066

Keywords:

cyber security, cyber threats, artificial intelligence, machine learning, cryptography, cryptanalysis, cipher

Abstract

The article examines the Hill cipher as a classical example of applying linear algebra and modular arithmetic in cryptography. It elucidates the mathematical foundations of the algorithm, including the formation of the key matrix over finite fields, the conditions for its invertibility, and the implementation of encryption as the multiplication of plaintext vectors by the key matrix. This approach is presented as a distinctive “bridge between theory and practice,” combining formal mathematical constructions with practical data protection mechanisms. Particular attention is given to the vulnerabilities of the Hill cipher. It is shown that the algorithm is insecure in modern contexts due to the linearity of its transformations and the absence of nonlinear components. Examples of cryptanalytic attacks are provided, demonstrating that the cipher can be “broken apart” even with a minimal number of plaintext-ciphertext pairs. This makes it evident that, in the context of 21st-century cybersecurity, the Hill cipher is merely a “shadow of its era” and cannot serve as a fully reliable tool for data protection. At the same time, the educational and methodological value of the cipher is emphasized. It allows one to “see the mechanism from the inside,” clearly illustrating the transition from monoalphabetic ciphers to block transformations. The article highlights that the Hill cipher played the role of a “first step” in the development of structures that later evolved into DES and AES, where the use of block structures and matrix operations became a fundamental element of modern cryptography.

Downloads

Download data is not yet available.

References

1. Zhang, X., Shao, C., Li, T. et al. GFSPX: an efficient lightweight block cipher for resource-constrained IoT nodes. J Supercomput 80, 25256–25282 (2024). https://doi.org/10.1007/s11227-024-06412-2

2. Announcing Issuance of Federal Information Processing Standards (FIPS) FIPS 203, Module-Lattice-Based KeyEncapsulation Mechanism Standard, FIPS 204, Module-Lattice-Based Digital Signature Standard, and FIPS 205, Stateless Hash-Based Digital Signature Standard. National Institute of Standards and Technology on 08/14/2024. Retrieved from https://csrc.nist.gov/news/2024/postquantum-cryptography-fips-approved

3. Dani, J., Nakka, K. and Saxena, N. A Machine Learning-Based Framework for Assessing Cryptographic Indistinguishability of Lightweight Block Ciphers. 30 May 2024. Retrieved from https://arxiv.org/abs/2405.19683v1

4. Kaur, J., Canto, A. C., Kermani, M. M., Azarderakhsh, R. A Comprehensive Survey on the Implementations, Attacks, and Countermeasures of the Current NIST Lightweight Cryptography Standard, 2023. URL: https://arxiv.org/abs/2304.06222

5. Ni, Z., Khalid, A., Liu, W., & O ׳Neill, M. (2024). Bitstream Fault Injection Attacks on CRYSTALS Kyber Implementations on FPGAs. 1–6. Retrieved from https://doi.org/10.23919/date58400.2024.10546550

6. Zhyvylo Y. (2023). Exploring and Acquiring Modern Human Resource Competencies in Cybersecurity Amidst State Digital Transformation. Pressing Problems of Public Administration, 2(63), 111-127. https://doi.org/10.26565/1684-8489-2023-2-08

7. Zhyvylo , Y. O., & Zhyvylo , I. O. (2021). Joint training of the cyber security defense forces personnel in the conditions of total state defense. Theory and Practice of Public Administration, 2(73), 144-153. https://doi.org/10.34213/tp.21.02.16

8. Mahdi, Q. A., Zhyvotovskyi, R., Kravchenko, S., Borysov, I., Oleksandr, O., Panchenko, I., Zhyvylo, Y., Kupchyn, A., Koltovskov, D., Boholii, S. (2021). Development of a method of structural-parametric assessment of the object state. EasternEuropean Journal of Enterprise Technologies, 5 (4 (113)), 34–44. doi: https://doi.org/10.15587/1729-4061.2021.240178

9. Koval M., Sova O., Orlov O., Zhyvylo Y., Zhyvylo I. Improvement of complex resource management of special-purpose communication systems // 5(9-119) (2022): Eastern-European Journal of Enterprise Technologies. Р. 34–44;

10. S. Kashkevich, A. Shyshatskyi, O. Dmytriieva, Y. Zhyvylo, G. Plekhova, S. Neronov The development of management methods based on bio-inspired algorithms Information and control systems: modelling and optimizations: collective monograph. – Kharkiv: TECHNOLOGY CENTER PC, 2024. pp. 35-69. DOI: http://doi.org/10.15587/978-617-8360-04-7

11. Zhyvylo, Y.О. (2024). Methodology for developing a national cybersecurity strategy. State Formation, no. 2 (36), 307–321. DOI: https://doi.org/10.26565/1992-2337-2024-2-21

12. Живило Є. О. Оцінка ризиків кібербезпеки та контролю конфіденційності в інформаційних системах державного управління / Є. О. Живило, Д. Г. Шевченко // Збірник наукових праць Військового інституту Київського національного університету імені Тараса Шевченка. 2022. № 75. С. 66-77. URL: http://nbuv.gov.ua/UJRN/Znpviknu_2022_75_9

13. Живило Є.О., Черноног О.О. Стратегія кібероборони України, Збірник наукових праць ВІТІ № 4, 2017, С.30–37. URL: https://www.researchgate.net/publication/380979172_STRATEGIA_KIBEROBORONI_UKRAINI

14. Ігор Ромашко, Юлія Калашнікова, CISCO SECUREX ТА ZERO TRUST: СУЧАСНІ ПІДХОДИ ДО КІБЕРЗАХИСТУ, 2025. Retrieved from http://perspectives.pp.ua/index.php/nts/article/view/29469/29425.

15. Onyshchenko, S., Zhyvylo, Ye., Cherviak, A. and Bilko S. (2023), “Determining the patterns of using information protection systems at financial institutions in order to improve the level of financial security”, //) (2023), Eastern-European Journal of Enterprise Technologies, vol. 5 (13 (125), pp. 65–76. DOI: https://doi.org/10.15587/1729-4061.2023.288175

Published

2025-12-02