INFORMATION SYSTEM FOR INTELLIGENT CUSTOMER CLASSIFICATION: ARCHITECTURE, IMPLEMENTATION, AND EXPERIMENTAL RESEARCH

Authors

  • Oleksandr Shmatko
  • Daria Malyshenko
  • Olena Voloshchuk

DOI:

https://doi.org/10.26906/SUNZ.2025.3.159

Keywords:

information system, customer classification, machine learning, software architecture, logistic regression, decision trees, experimental research

Abstract

Relevance. In the context of ongoing digital transformation of business processes, there is a growing demand for intelligent information systems capable of analyzing and processing large volumes of customer data. One of the key directions in this field is automated customer classification using machine learning algorithms, which significantly enhances the effectiveness of marketing strategies and decision-making. Object of the research: customer classification processes in information systems using machine learning methods. Purpose of the article: to design, implement, and investigate the architecture of software components of an information system for intelligent customer classification, taking into account requirements for scalability, performance, and classification accuracy. Research results. The article proposes an architectural model of an information system that includes modules for data collection, preprocessing, and customer classification. Several software components were implemented, integrating machine learning algorithms such as logistic regression, decision trees, and support vector machines. Experimental studies based on a real-world dataset demonstrated high classification accuracy and the system’s efficiency under limited computational resources. Conclusions. The developed information system ensures accurate customer classification and can be applied in commercial data analytics platforms. The research findings can be used to further improve intelligent software systems for data analysis.

Downloads

Download data is not yet available.

References

1. Kotler, P., Keller, K. L., Brady, M., Goodman, M., & Hansen, T. (2016). Marketing Management 3rd edn PDF eBook. Pearson Higher Ed.

2. Wedel, M., & Kamakura, W. A. (2000). Market segmentation: Conceptual and methodological foundations. Springer Science & Business Media.

3. Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666. DOI: https://doi.org/10.1007/978-3-540-87479-9_3 DOI: https://doi.org/10.1016/j.patrec.2009.09.011

4. Kumar, S., Rani, R., Pippal, S. K., & Agrawal, R. (2025). Customer segmentation in e-commerce: K-means vs hierarchical clustering. TELKOMNIKA (Telecommunication Computing Electronics and Control), 23(1), 119-128. DOI: http://doi.org/10.12928/telkomnika.v23i1.26384 DOI: https://doi.org/10.12928/telkomnika.v23i1.26384

5. Tabianan, K., Velu, S., & Ravi, V. (2022). K-means clustering approach for intelligent customer segmentation using customer purchase behavior data. Sustainability, 14(12), 7243. DOI: https://doi.org/10.3390/su14127243 DOI: https://doi.org/10.3390/su14127243

6. Zhao, Y., & Zhou, X. (2021, April). K-means clustering algorithm and its improvement research. In Journal of Physics: Conference Series (Vol. 1873, No. 1, p. 012074). IOP Publishing. DOI: 10.1088/1742-6596/1873/1/012074 DOI: https://doi.org/10.1088/1742-6596/1873/1/012074

7. Huang, S., Kang, Z., Xu, Z., & Liu, Q. (2021). Robust deep k-means: An effective and simple method for data clustering. Pattern Recognition, 117, 107996. DOI: https://doi.org/10.1016/j.patcog.2021.107996 DOI: https://doi.org/10.1016/j.patcog.2021.107996

8. Jothi, R., Muthukumaran, K. (2022). Telecom Customer Segmentation Using Deep Embedded Clustering Algorithm. In: Alyoubi, B., Ben Ncir, CE., Alharbi, I., Jarboui, A. (eds) Machine Learning and Data Analytics for Solving Business Problems. Unsupervised and Semi-Supervised Learning. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-18483-3_5 DOI: https://doi.org/10.1007/978-3-031-18483-3_5

9. Cendana, M., & Kuo, R. J. (2024). Categorical data clustering: A bibliometric analysis and taxonomy. Machine Learning and Knowledge Extraction, 6(2), 1009-1054. DOI: https://doi.org/10.3390/make6020047 DOI: https://doi.org/10.3390/make6020047

10. Lee, Z. J., Lee, C. Y., Chang, L. Y., & Sano, N. (2021). Clustering and classification based on distributed automatic feature engineering for customer segmentation. Symmetry, 13(9), 1557. DOI: https://doi.org/10.3390/sym13091557 DOI: https://doi.org/10.3390/sym13091557

11. Kumaresan, S. P., Tan, C. K., & Ng, Y. H. (2021). Deep neural network (dnn) for efficient user clustering and power allocation in downlink non-orthogonal multiple access (noma) 5g networks. Symmetry, 13(8), 1507. DOI: https://doi.org/10.3390/sym13081507 DOI: https://doi.org/10.3390/sym13081507

12. Xiahou, X., & Harada, Y. (2022). B2C E-commerce customer churn prediction based on K-means and SVM. Journal of Theoretical and Applied Electronic Commerce Research, 17(2), 458-475. DOI: https://doi.org/10.3390/jtaer17020024 DOI: https://doi.org/10.3390/jtaer17020024

13. Liu, R., Ali, S., Bilal, S. F., Sakhawat, Z., Imran, A., Almuhaimeed, A., ... & Sun, G. (2022). An intelligent hybrid scheme for customer churn prediction integrating clustering and classification algorithms. Applied Sciences, 12(18), 9355. DOI: https://doi.org/10.3390/app12189355 DOI: https://doi.org/10.3390/app12189355

14. Altameem, A. A., & Hafez, A. M. (2022). Behavior analysis using enhanced fuzzy clustering and deep learning. Electronics, 11(19), 3172. DOI: https://doi.org/10.3390/electronics11193172 DOI: https://doi.org/10.3390/electronics11193172

15. Yan, X., Li, Y., Nie, F., & Li, R. (2025). Bank Customer Segmentation and Marketing Strategies Based on Improved DBSCAN Algorithm. Applied Sciences (2076-3417), 15(6).DOI: 10.3390/app15063138 DOI: https://doi.org/10.3390/app15063138

16. Alshdaifat, E. A., Alshdaifat, D. A., Alsarhan, A., Hussein, F., & El-Salhi, S. M. D. F. S. (2021). The effect of preprocessing techniques, applied to numeric features, on classification algorithms' performance. Data, 6(2), 11. DOI: https://doi.org/10.3390/data6020011 DOI: https://doi.org/10.3390/data6020011

17. Abdulrazzak, H. N., Hock, G. C., Mohamed Radzi, N. A., Tan, N. M., & Kwong, C. F. (2022). Modeling and analysis of new hybrid clustering technique for vehicular ad hoc network. Mathematics, 10(24), 4720. DOI: https://doi.org/10.3390/math10244720 DOI: https://doi.org/10.3390/math10244720

18. Chaudhry, M., Shafi, I., Mahnoor, M., Vargas, D. L. R., Thompson, E. B., & Ashraf, I. (2023). A systematic literature review on identifying patterns using unsupervised clustering algorithms: A data mining perspective. Symmetry, 15(9), 1679. DOI: https://doi.org/10.3390/sym15091679 DOI: https://doi.org/10.3390/sym15091679

19. Najeh, H., Lohr, C., & Leduc, B. (2022). Dynamic segmentation of sensor events for real-time human activity recognition in a smart home context. Sensors, 22(14), 5458. DOI: https://doi.org/10.3390/s22145458 DOI: https://doi.org/10.3390/s22145458

20. Domingos, E., Ojeme, B., & Daramola, O. (2021). Experimental analysis of hyperparameters for deep learning-based churn prediction in the banking sector. Computation, 9(3), 34. DOI: https://doi.org/10.3390/computation9030034 DOI: https://doi.org/10.3390/computation9030034

21. Saha, L., Tripathy, H. K., Gaber, T., El-Gohary, H., & El-kenawy, E. S. M. (2023). Deep churn prediction method for telecommunication industry. Sustainability, 15(5), 4543. DOI: https://doi.org/10.3390/su15054543 DOI: https://doi.org/10.3390/su15054543

22. Chen, Y. S., Lin, C. K., Chou, J. C. L., Chen, S. F., & Ting, M. H. (2022). Application of advanced hybrid models to identify the sustainable financial management clients of long-term care insurance policy. Sustainability, 14(19), 12485. DOI: https://doi.org/10.3390/su141912485 DOI: https://doi.org/10.3390/su141912485

23. Jiang, W., Song, C., Wang, H., Yu, M., & Yan, Y. (2023). Obstacle detection by autonomous vehicles: An adaptive neighborhood search radius clustering approach. Machines, 11(1), 54. DOI: https://doi.org/10.3390/machines11010054 DOI: https://doi.org/10.3390/machines11010054

24. Banegas-Luna, A. J., Pe?a-Garc?a, J., Iftene, A., Guadagni, F., Ferroni, P., Scarpato, N., ... & P?rez-S?nchez, H. (2021). Towards the interpretability of machine learning predictions for medical applications targeting personalised therapies: a cancer case survey. International Journal of Molecular Sciences, 22(9), 4394. DOI: https://doi.org/10.3390/ijms22094394 DOI: https://doi.org/10.3390/ijms22094394

25. Eslami, E., Razi, N., Lonbani, M., & Rezazadeh, J. (2024). Unveiling IoT Customer Behaviour: Segmentation and Insights for Enhanced IoT-CRM Strategies: A Real Case Study. Sensors, 24(4), 1050. DOI: https://doi.org/10.3390/s24041050 DOI: https://doi.org/10.3390/s24041050

Published

2025-09-30