ANALYSIS OF APPROACHES TO MODELING AND ARCHITECTURAL REPRESENTATION OF IMAGE PROCESSING INFORMATION TECHNOLOGY FROM ONBOARD OPTO-ELECTRONIC OBSERVATION SYSTEMS

Authors

  • Hennadii Khudov
  • Irina Khizhnyak
  • Oleh Salnyk
  • Petro Mynko
  • Vitalii Andronov

DOI:

https://doi.org/10.26906/SUNZ.2025.3.151

Keywords:

information technology, modeling of information technology, architectural representation of information technology, image processing from onboard opto-electronic observation systems

Abstract

The subject of the study in the article is the approaches to modeling and architectural representation of information technology. The aim is to analyze modeling approaches and architectural representation of image processing information technology from onboard optoelectronic observation systems. Tasks: to analyze existing approaches to modeling and architectural representation of information technologies, considering the specific features of image processing from onboard optoelectronic systems; to identify the most relevant approaches for the development of such technologies; and to provide recommendations for the application of unified models to ensure effective collaboration among specialists within a common technical environment. The methods used include analytical and empirical methods of comparative research, as well as methods for developing information technologies. The following results were obtained: the main approaches to modeling information technologies were analyzed and systematized, including functional, object-oriented, behavioral, and business modeling. It was determined that the effective design of image processing systems based on onboard optoelectronic platforms requires a comprehensive application of these approaches, depending on the specifics of the tasks. Architectural concepts such as monolithic, microservice, C4 model, TOGAF, and three-tier structures were also reviewed, which enable the formalization of the logic of complex IT solutions. In addition, modern tools for creating diagrams and models were described, supporting the design, verification, and documentation processes of such systems. The results can serve as a methodological basis for the development of information technologies in the field of onboard surveillance and similar complex technical systems. Conclusions: Modeling is a critically important component in the creation of information technologies for image processing from onboard optoelectronic systems. The effectiveness of such IT solutions is ensured through the integrated application of various modeling and architectural design approaches, allowing both technical and business requirements to be addressed. The combination of functional, object-oriented, behavioral, and business models, along with the use of modern architectural solutions and tools, contributes to the creation of reliable, scalable, and adaptive systems. Thus, modeling serves as a key factor in the successful development of complex information technologies in the field of optoelectronic observation. The research was conducted with grant support from the National Research Foundation of Ukraine within the framework of the "Science for Strengthening Ukraine's Defense Capability" competition, project title "Information Technology for Automated Image Segmentation of Objects in Strike FPV Drone Targeting Systems Based on Swarm Intelligence Algorithms," registration number 2023.04/0153.

Downloads

Download data is not yet available.

References

1. Довгий С. О., Лялько В. І., Бабійчук С. М., Кучма Т. Л., Томченко О. В., Юрків Л. Я. Основи дистанційного зондування Землі: історія та практичне застосування. Київ: Інститут обдарованої дитини НАПН України, 2019. 316 с.

2. Байрак Г., Муха Б. Дистанційні дослідження Землі. Львів: Видавничий центр ЛНУ ім. І. Франка, 2010. 712 с.

3. Даник Ю. Г., Топольницький П. П., Пулеко І. В., Поздняков П. В., Родіонов А. В., Бугайов М. В. Основи побудови безпілотних роботизованих систем спеціального призначення. Житомир: ЖВІ, 2016. 306 c.

4. Манойлов В. П., Омельчук В. В., Опанюк В. В. Дистанційне зондування Землі із космосу: науково-технічні основи формування й обробки видової інформації. Житомир: ЖДТУ, 2008. 384 c.

5. Білоус В.В., Боднар С.П., Курач Т.М., Молочко А.М., Патиченко Г.О., Підлісецька І.О. Дистанційне зондування з основами фотограмметрії: навчальний посібник К.: ВПЦ «Київський університет», 2011. 367 с.

6. Кохан С. С. Геоінформаційний аналіз і моделювання. Ч. 1. Навч.-мет. пос. Київ: ЦП «КОМПРИНТ», 2018. 93 с.

7. Злепко С. М., Тимчик С. В., Федосова І. В. та ін. Сучасні інформаційні технології в науці та освіті: навчальний посібник [Електронний ресурс]. Вінниця: ВНТУ, 2018. 161 с.

8. Шевчук Т. В., Кравчук Г. Т. Стан і перспективи розвитку інформаційних технологій в Україні. Науковий вісник НЛТУ України. Серія Економічна. 2018, т. 28, No 9. С. 114–118. https://doi.org/10.15421/40280922 DOI: https://doi.org/10.15421/40280922

9. Lee W.-T., Ma S.-P. Process modeling and analysis of service-oriented architecture–based wireless sensor network applications using multiple-domain matrix. International Journal of Distributed Sensor Networks. 2016. https://doi.org/10.1177/1550147716676556 DOI: https://doi.org/10.1177/1550147716676556

10. Friedenthal S., Moore A., Steiner R. Systems engineering with SysML/UML: Modeling, analysis, design. A volume in The MK/OMG Press. Book. 2008. DOI: https://doi.org/10.1016/B978-0-12-374379-4.00001-1

11. Gezer D., Unver H. O., Tascioglu Y., Celebioglu K., Aradag S. Design and simulation of a SCADA system using SysML and Simulink. IEEE International Conference on Renewable Energy Research and Applications (ICRERA), Madrid, Spain. 2013. P. 935–939. https://doi.org/10.1109/ICRERA.2013.6749909 DOI: https://doi.org/10.1109/ICRERA.2013.6749909

12. Godlevskyi M. D., Orlovskyi D. L., Kopp A. M. Structural analysis and optimization of idef0 functional business process models. Radio Electronics, Computer Science, Control. 2018. № 3. P. 48–56. https://doi.org/10.15588/1607-3274-2018-3-6. DOI: https://doi.org/10.15588/1607-3274-2018-3-6

13. Siedashev O. Determination of Software Architecture (SOA) and Microservice Architecture (MSA) Usage Criteria. Visnyk of V. N. Karazin Kharkiv National University. Series "Mathematical Modeling. Information Technology. Automated Control Systems". 2024. No. 2. https://doi.org/10.26565/2519-2310-2024-2-04 DOI: https://doi.org/10.26565/2519-2310-2024-2-04

14. Parsons M., Bratanov D., Gaston K. J., Gonzalez L. F. UAVs, Hyperspectral Remote Sensing, and Machine Learning Revolutionizing Reef Monitoring. Sensors. 2018. Vol. 18, No. 7. https://doi.org/10.3390/s18072026 DOI: https://doi.org/10.3390/s18072026

15. Худов Г. В., Калімулін Т. М., Хижняк І. А., Місюк Г. В., Сердюк О. В. Аналіз основних методів сегментування при тематичній обробці видових зображень. Системи обробки інформації. 2022. № 4 (171). С. 82-89. https://doi.org/10.30748/soi.2022.171.09 DOI: https://doi.org/10.30748/soi.2022.171.09

16. Llano E. G., Roig D. O., Cabrera Y. C. Unsupervised Segmentation of Agricultural Crops in UAV RGB Images. Revista Cubana de Ciencias Informáticas. 2018. Vol. 12, No. 4. P. 17–28. Available at: https://www.redalyc.org/journal/3783/378365912002/html/.

17. Manenti G., Ebrahimiarjestan M., Yang L., Yu M. Functional Modelling and IDEF0 to Enhance and Support Process Tailoring in Systems Engineering. IEEE International Systems Engineering Symposium (ISSE). 2019. https://doi.org/10.1109/ISSE46696.2019.8984539 DOI: https://doi.org/10.1109/ISSE46696.2019.8984539

18. Moreno M., Turner C., Tiwari A., Hutabarat W., Charnley F., Widjaja D., Mondini L. Re-distributed Manufacturing to Achieve a Circular Economy: A Case Study Utilizing IDEF0 Modeling. Procedia CIRP. 2017. Vol. 63. P. 686-691. DOI: https://doi.org/10.1016/j.procir.2017.03.322

19. Kumar A., Dhanwate S. SysML Based Modelling of Gear Shifting Strategy and Drivability for Automatic Transmission. Journal of Physics: Conference Series. 2020. 1478(1), 012008. https://doi.org/10.1088/1742-6596/1478/1/012008 DOI: https://doi.org/10.1088/1742-6596/1478/1/012008

20. UML State Machine Diagrams: An Agile Intoduction. URL: https://agilemodeling.com/artifacts/statemachinediagram.htm?utm_source=chatgpt.com

21. Гобов Д., Шевченко Н. Визначення архітектури вимог до ІТ-рішення як бізнес-аналітичного продукту. Innovative technologies and scientific solutions for industries. 2024. № 1(27). С. 26–38. https://doi.org/10.30837/ITSSI.2024.27.026. DOI: https://doi.org/10.30837/ITSSI.2024.27.026

22. The C4 model for visualising software architecture. веб-сайт. URL : https://c4model.com/

23. TOGAF: IT-архітектура підприємства. веб-сайт. URL : https://www.sso.net.ua/product/togaf/

24. What is a 3-tier application architecture? Definition and Examples. веб-сайт. URL: https://vfunction.com/blog/3-tierapplication/?utm_source=chatgpt.com

25. Інструменти ІТ бізнес-аналітика для аналізу та специфікації Бізнесу/Системи. веб-сайт. URL: https://www.ba.in.ua/2023/05/05/instrumenty-it-biznes-analityka-dlya-analizu-ta-speczyfikacziyi-biznesu-systemy-chastyna-i

26. UX дизайнерам до уваги: топ кращих інструментів для прототипування. веб-сайт. URL : https://danit.com.ua/uk/blog/ux-dyzajneram-do-uvagy-top-krashhyh-instrumentiv-dlya-prototypuvannya

Published

2025-09-30