ADAPTIVE FILTERING AND DYNAMIC COMPUTATION OFFLOADING FOR RESILIENT TASK EXECUTION IN IIOT

Authors

  • Eduard Malokhvii

DOI:

https://doi.org/10.26906/SUNZ.2025.3.122

Keywords:

Industrial Internet of Things, Edge Computing, Task Offloading, Redundancy, Latency-Aware Scheduling, Fault Tolerance, Adaptive Filtering, Decentralized Systems

Abstract

Relevance. The execution of time-sensitive tasks in Industrial Internet of Things (IIoT) systems requires decentralized and fault-tolerant computing models that can operate under dynamic workloads, unstable node availability, and limited resources. Object of research: task management and offloading processes in edge–fog IIoT environments. Purpose of the article. Development of a method for decentralized, latency-aware task processing using adaptive filtering and dynamic computation offloading, which ensures high availability, efficient resource usage, and responsiveness in distributed edge systems. Research results. The paper presents the AFDCO method, which integrates local data filtering, node availability evaluation, latency-based offloading, and lightweight redundancy into a unified framework. This approach enables autonomous and fault-resilient task execution without relying on centralized controllers. Simulation results confirm that AFDCO reduces response time, improves task deadline compliance, and minimizes network and energy overhead. Conclusions. Compared to static or centralized task allocation models, the proposed method demonstrates better adaptability and robustness under variable conditions by dynamically adjusting execution and replication strategies based on system feedback. Scope of application of the obtained results: distributed IIoT systems, edge–fog computing platforms, and lowlatency industrial automation scenarios requiring decentralized execution and fault recovery.

Downloads

Download data is not yet available.

References

1. R. P. Singh, M. Javaid, A. Haleem, and R. Suman, “Internet of things (IoT) applications to fight against COVID-19 pandemic Diabetes & Metabolic Syndrome”, Clinical Research & Reviews, vol. 14, no. 4, pp. 521-524, 2020, doi: https://doi.org/10.1016/j.dsx.2020.04.041 DOI: https://doi.org/10.1016/j.dsx.2020.04.041

2. C. Gong, F. Lin, X. Gong, and Y. Lu, “Intelligent Cooperative Edge Computing in Internet of Things”, IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9372-9382, 2020, doi: https://doi.org/10.1109/JIOT.2020.2986015 DOI: https://doi.org/10.1109/JIOT.2020.2986015

3. L. Cui, S. Yang, Z. Chen, Y. Pan, Z. Ming, and M. Xu, “A Decentralized and Trusted Edge Computing Platform for Internet of Things”, IEEE Internet of Things Journal, vol. 7 no. 5, pp. 3910-3922, 2019, doi: https://doi.org/10.1109/JIOT.2019.2951619 DOI: https://doi.org/10.1109/JIOT.2019.2951619

4. M. S. Elbamby, C. Perfecto, C. F. Liu, J. Park, S. Samarakoon, X. Chen, and M. Bennis, “Wireless Edge Computing with Latency and Reliability Guarantees”, Proc. IEEE, vol. 10 (8), pp. 1717-1737, 2019, doi: https://doi.org/10.48550/arXiv.1905.05316 DOI: https://doi.org/10.1109/JPROC.2019.2917084

5. H. El-Sayed, S. Sankar, M. Prasad, D. Puthal, A. Gupta, M. Mohanty, and C. T. Lin, “Edge of Things: The Big Picture on the Integration of Edge, IoT and the Cloud in a Distributed Computing Environment”, IEEE Access, vol 6, pp. 1706-1717, 2017, doi: https://doi.org/10.1109/ACCESS.2017.2780087 DOI: https://doi.org/10.1109/ACCESS.2017.2780087

6. A. Javed, K. Heljanko, A. Buda, and K. Främling, “CEFIoT: A Fault-Tolerant IoT Architecture for Edge and Cloud”, 2018 IEEE 4th world forum on internet of things (WF-IoT), pp. 813-818, 2018, doi: https://doi.org/10.48550/arXiv.2001.08433 DOI: https://doi.org/10.1109/WF-IoT.2018.8355149

7. G. Premsankar, M. D. Francesco, and T. Taleb, “Edge Computing for the Internet of Things: A Case Study”, IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1275-1284, 2018, doi: https://doi.org/10.1109/JIOT.2018.2805263 DOI: https://doi.org/10.1109/JIOT.2018.2805263

8. W. Yu, F. Liang, X. He, W. G. Hatcher, C. Lu, J. Lin, and X. Yang, “A Survey on the Edge Computing for the Internet of Things”, IEEE Access, vol. 6, pp. 6900-6919, 2017, doi: https://doi.org/10.1109/ACCESS.2017.2778504 DOI: https://doi.org/10.1109/ACCESS.2017.2778504

9. Y. Zhang, X. Chen, Y. Chen, Z. Li, and J. Huang, “Cost Efficient Scheduling for Delay-Sensitive Tasks in Edge Computing System”, 2018 IEEE Int. Conf. on Services Computing, pp. 73-80, 2018, doi: https://doi.org/10.1109/SCC.2018.00017 DOI: https://doi.org/10.1109/SCC.2018.00017

10. Y. Sahni, J. Cao, and L. Yang, “Data-Aware Task Allocation for Achieving Low Latency in Collaborative Edge Computing”, IEEE Internet of Things Journal, vol. 6 no. 2, pp. 3512-3524, 2018, doi: https://doi.org/10.1109/JIOT.2018.2886757 DOI: https://doi.org/10.1109/JIOT.2018.2886757

11. C. Avasalcai, C. Tsigkanos, and S. Dustdar, “Decentralized Resource Auctioning for Latency-Sensitive Edge Computing”, 2019 IEEE Int. Conf. on Edge Computing, pp. 72-76, 2019, doi: https://doi.org/10.1109/EDGE.2019.00027 DOI: https://doi.org/10.1109/EDGE.2019.00027

12. M. Mudassar, Y. Zhai, L. Liao, and J. Shen, “A Decentralized Latency-Aware Task Allocation and Group Formation Approach With Fault Tolerance for IoT Applications”, IEEE Access, 8, pp. 49212-49223, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2979939 DOI: https://doi.org/10.1109/ACCESS.2020.2979939

13. S. Latre, P. Leroux, T. Coenen, B. Braem, P. Ballon, and P. Demeester, “City of things: An integrated and multi-technology testbed for IoT smart city experiments”, Proc. IEEE Int. Smart Cities Conf. (ISC), pp. 1–8, Sep. 2016, doi: https://doi.org/10.1109/ISC2.2016.7580875 DOI: https://doi.org/10.1109/ISC2.2016.7580875

14. H.-L. Truong, and S. Dustdar, “Principles for Engineering IoT Cloud Systems”, IEEE Cloud Comput., vol. 2, no. 2, pp. 68–76, Mar. 2015, doi: https://doi.org/10.1109/MCC.2015.23 DOI: https://doi.org/10.1109/MCC.2015.23

Downloads

Published

2025-09-30