NEURAL ARCHITECTURE COMPARISON FOR FACT VERIFICATION ON FEVER DATASET

Authors

  • S. Datsenko

DOI:

https://doi.org/10.26906/SUNZ.2025.3.072

Keywords:

fact verification, neural networks, FEVER dataset, hybrid architectures, graph neural networks, bidirectional LSTM

Abstract

The exponential growth of misinformation and fake news across digital platforms poses unprecedented challenges to information integrity, requiring sophisticated automated fact-checking systems capable of verifying claims against reliable evidence sources with high accuracy and computational efficiency. This study aims to evaluate and compare four hybrid neural architectures (BiLSTM-CNN, BiLSTM-RNN, BiLSTM-GRU, and BiLSTM-GNN) for automated fact verification using the FEVER dataset, investigating their effectiveness in claim-evidence verification under GPU memory constraints while analyzing training dynamics and generalization capabilities. The following results are obtained: The BiLSTM-CNN architecture achieved optimal performance with 79.5% accuracy, 79.5% recall, 77.9% F1-score, and 93.4% AUC-ROC, followed by BiLSTM-GNN (78.9% accuracy, 93.3% AUC-ROC) and BiLSTM-GRU (77.9% accuracy, 92.2% AUC-ROC), while BiLSTM-RNN exhibited catastrophic failure (33.3% accuracy). All successful architectures demonstrated significant overfitting with 15-17% train-validation accuracy gaps, indicating systematic generalization challenges with limited training data (40,000 samples). Conclusion. Multi-kernel convolutional feature extraction proves most effective for local pattern recognition in fact verification, while graph-inspired approaches show promising potential for relational reasoning. The consistent overfitting across architectures highlights the critical need for enhanced regularization, data augmentation, and ensemble methods to achieve robust performance in automated fact-checking systems under computational constraints.

Downloads

Download data is not yet available.

References

1. Thorne, J.; Vlachos, A.; Christodoulopoulos, C.; Mittal, A. FEVER: a Large-scale Dataset for Fact Extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, New Orleans, Louisiana, June 2018; pp. 809–819. doi: https://doi.org/10.18653/v1/N18-1074. DOI: https://doi.org/10.18653/v1/N18-1074

2. Nie, Y.; Chen, H.; Bansal, M. Combining Fact Extraction and Verification with Neural Semantic Matching Networks. In Proceedings of the AAAI Conference on Artificial Intelligence, July 2019; pp. 6859–6866. doi: https://doi.org/10.1609/aaai.v33i01.33016859. DOI: https://doi.org/10.1609/aaai.v33i01.33016859

3. Abualigah, L.; Al-Ajlouni, Y.Y.; Daoud, M.S.; Altalhi, M.; Migdady, H. Fake news detection using recurrent neural network based on bidirectional LSTM and GloVe. Soc. Netw. Anal. Min. 2024, 14, 40. doi: https://doi.org/10.1007/s13278-024-01198-w. DOI: https://doi.org/10.1007/s13278-024-01198-w

4. Sastrawan, I.K.; Bayupati, I.P.A.; Arsa, D.M.S. Detection of fake news using deep learning CNN–RNN based methods. ICT Express 2021, 8, 396–408. doi: https://doi.org/10.1016/j.icte.2021.10.003. DOI: https://doi.org/10.1016/j.icte.2021.10.003

5. Dev, D. G.; Bhatnagar, V.; Bhati, B. S.; Gupta, M.; Nanthaamornphong, A. LSTMCNN: A hybrid machine learning model to unmask fake news. Heliyon. 2024, 3, 10. doi: https://doi.org/10.1016/j.heliyon.2024.e25244. DOI: https://doi.org/10.1016/j.heliyon.2024.e25244

6. Ajik, E. D.; Obuandike, G. N.; Echobu, F. O. Fake News Detection Using Optimized CNN and LSTM Techniques. Journal of Information Systems and Informatics. 2023, 3, 5, 1044-1057. doi: https://doi.org/10.51519/journalisi.v5i3.548. DOI: https://doi.org/10.51519/journalisi.v5i3.548

7. Nasir, J. A.; Khan, O. S.; Varlamis, I. Fake news detection: A hybrid CNN-RNN based deep learning approach. International Journal of Information Management Data Insights. 2021, 1, 1, 100007. doi: https://doi.org/10.1016/j.jjimei.2020.100007. DOI: https://doi.org/10.1016/j.jjimei.2020.100007

8. Almandouh, E.; Alrahmawy, M.F.; Eisa, M. et al. Ensemble based high performance deep learning models for fake news detection. Sci. Rep. 2024, 14, 26591. doi: https://doi.org/10.1038/s41598-024-76286-0. DOI: https://doi.org/10.1038/s41598-024-76286-0

9. Mohammed, A.; Kora R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ.-Comput. Inf. Sci. 2023, 2, 35, 757–774. doi: https://doi.org/10.1016/j.jksuci.2023.01.014. DOI: https://doi.org/10.1016/j.jksuci.2023.01.014

10. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò, P.; Bengio, Y. Graph Attention Networks. In Proceedings of the International Conference on Learning Representations, 2018; pp. 1–12. url: https://arxiv.org/abs/1710.10903v3.

11. Brody, S.; Alon, U.; Yahav, E. How Attentive are Graph Attention Networks? In Proceedings of the International Conference on Learning Representations, May 2021. url: https://arxiv.org/abs/2105.14491.

12. Wu, L.; Rao, Y.; Yang, X.; Wang, W.; Nazir, A. Evidence-Aware Hierarchical Interactive Attention Networks for Explainable Claim Verification. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, July 2020; pp. 1388–1394. doi: https://doi.org/10.24963/ijcai.2020/193. DOI: https://doi.org/10.24963/ijcai.2020/193

13. Xu, W.; Wu, J.; Liu, Q.; Wu, S.; Wang, L. Evidence-aware Fake News Detection with Graph Neural Networks. In Proceedings of the ACM Web Conference 2022, April 2022; pp. 2501–2510. doi: https://doi.org/10.1145/3485447.3512122. DOI: https://doi.org/10.1145/3485447.3512122

14. Sun, C.; Li, C.; Lin, X. et al. Attention-based Graph Neural Networks: A Survey. Artif. Intell. Rev. 2023, 56, 2263–2310. doi: https://doi.org/10.1007/s10462-023-10577-2. DOI: https://doi.org/10.1007/s10462-023-10577-2

15. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. doi: https://doi.org/10.1109/TNNLS.2020.2978386. DOI: https://doi.org/10.1109/TNNLS.2020.2978386

16. Luu, S. T.; Vo, T.; Nguyen, LM. MCVE: Multimodal Claim Verification and Explanation Framework for Fact-Checking System. Multimed. Syst. 2025, 31, 242. doi: https://doi.org/10.1007/s00530-025-01804-7. DOI: https://doi.org/10.1007/s00530-025-01804-7

Downloads

Published

2025-09-30