THERMOANALYTICAL COMPLEX FOR CHARACTERIZATION AND IDENTIFICATION OF SUBSTANCES BY THE METHOD OF DIFFERENTIAL THERMAL ANALYSIS AND SOME OF ITS POSSIBLE AREAS OF APPLICATION

Authors

  • Oleksandr Dryuchko
  • Natalia Bunyakina
  • Bohdan Boryak
  • Ruslan Zakharchenko
  • Lyudmila Davydenko

DOI:

https://doi.org/10.26906/SUNZ.2025.3.027

Keywords:

thermo-analytical complex, differential thermal research method, linear program temperature control, thermophysical transformations of substances, two-coordinate recording of thermograms ΔT-T

Abstract

A simple multi-purpose thermoanalytical complex with a combined differential-thermal method of research has been developed for the identification of substances by the temperatures of phase transformations (melting, boiling, crystallization, polymorphic transitions), thermal decomposition; studying the nature and temperature limits of a number of thermal effects - stepwise; closely located by temperature value; those that overlap (caused by a change in spatial modification, dehydration, decomposition, etc.); functional dependencies of physical properties of substances; qualitative, and in some cases quantitative analysis of mechanical mixtures of several substances; measurement of phas e transition temperatures of individual substances and systems, construction of state diagrams on their basis; study of kinetic and thermodynamic parameters of their phase and chemical transformations; determination of thermophysical and other properties of substances with a change in temperature, etc. The operation of the analytical tool is based on the use of the differentialthermal method of research of the sample and indifferent substance. It consists of easily dismountable electric furnaces with special holders and cassettes for samples and the standard, a device for linear program temperature control with phase control, a tablet two-coordinate compensation potentiometer for recording thermograms of the samples under study in ΔT-T coordinates. Its operating temperature range is determined by the range of values of the use of chromel-alumel (HA) converters, up to 1300 °C. High metrological characteristics of the complex are ensured by the use of a HA thermocouple in the negative feedback of the temperature control device; a number of circuit and design solutions for its implementation; precision control of the supply of average thermal energy to the heating zone by software setting the proportional to time law of the "sweep" value of the reference voltage of the setter. Depending on the goals of the implemented tasks, the device can be used independently in local systems or in a complex of means during thermoanalytical studies. The development can be used for fundamental scientific research; in production laboratories for rapid analysis of the phase composition of incoming raw materials and finished products, their testing, evaluation of reliability and determination of service life; certificatio n; when establishing functional relationships of the objects under study; clarification of the conditions for synthesis and modification of the properties of modern multifunctional materials for various purposes and other similar purposes.

Downloads

Download data is not yet available.

References

1. Мазуренко Е.А., Герасемчук А.И., Трунова Е.К. и др. Координационные соединения металлов – прекурсоры функциональных материалов. Укр. хим. журн. 2004. Т. 70, № 7. С. 32–37.

2. Белоус А.Г. Некоторые тенденции развития функциональных материалов на основе сложных оксидных систем. Укр. хим. журн. 2009. Т. 75, № 7. С. 3–14.

3. Zhang Q., Schmidt N., Lan J. et al. A facile method for the synthesis of the Li0,3La0,57TiO3 solid state electrolyte. Chem. Com. 2014, vol. 50, pp. 5593–5596. DOI: https://doi.org/10.1039/C4CC00335G

4. Гавриленко О.М., Пашкова О.В., Білоус А.Г. Кристалохімічні особливості та властивості Li+,{Na+, K+}-заміщених ніобатів лантану і структурою дефектного перовскіту. Укр. хим. журн. 2005. Т. 71, № 8. С. 73–77.

5. Almadhi A., Injac S., Ji K., Ritterb C., Attfield P. Chemical tuning of a double double perovskite oxide. Chem. Commun. 2025, vol. 61, pp. 13469–13472 . DOI: https://doi.org/10.1039/D5CC03601A

6. Гавриленко О.М. Літій-провідні матеріали на основі ніобатів і танталатів лантану: синтез, структура, властивості. Укр. хим. журн. 2004. Т. 70, № 9. С. 31–34.

7. Chu W-F., Thangadural V., Weppner W. Ionics – a key technology for our energy and environmental needs on the rise. Ionics. 2006, no. 12, pp. 1–6. DOI: https://doi.org/10.1007/s11581-006-0015-5

8. Ramzy A., Thangadural V. Tailor-Made Development of Fast Li Ion Conducting Garnet-Like Solid Electrolytes. A. Chem. Soc. 2010, vol. 2, no. 2, pp. 385–390. DOI: https://doi.org/10.1021/am900643t

9. Белоус А.Г. Сложные оксиды металлов для сверхвысокочастотных и высокопроницаемых диэлектриков. Укр. хим. журн. 2008. Т. 74, № 1. С. 3–21.

10. Jena H., Govindan Kutty K.V. Studies on the ionic transport and structural investigations of La0,5Li0,5TiO3 perovskite synthesized by wet chemical methods and the effect of Ce, Zr substitution at Ti site. J. Mater. Sci. 2005, vol. 40, pp. 4737–4748. DOI: https://doi.org/10.1007/s10853-005-0480-7

11. Varma A., Mukasyan A.S., Rogachev A.S. et al. Solution Combustion Synthesis of Nanoscale Materials. American Chemical Society. Chem. Rev. 2016, vol. 116, pp. 14493-14586. DOI: https://doi.org/10.1021/acs.chemrev.6b00279

12. Schaak R.E., Mallouk T.E. Perovskites by Design: A Toolbox of Solid-State Reactions. Chemistry of Materials. 2002, vol.14, no. 4, pp. 1455-1471. DOI: https://doi.org/10.1021/cm010689m

13. Mendoza E., Padmasree K.P., Montemayor S.M. et al. Molten salts synthesis and electrical properties of Sr- and/or Mgdoped perovskite-type LaAlO3 powders. Journal of Materials Science. 2012, vol. 47, pp. 6076-6085. DOI: https://doi.org/10.1007/s10853-012-6520-1

14. International Standard IEC 60584-1:2013 Thermocouples - Part 1: EMF specifications and tolerances. ICS 17.200.20 - Temperature-measuring instruments. ISBN 978-2-8322-1047-5

15. Derivatograph Q-1500 D. Operation manual. MOM, Optical Instruments Factory. Budapest, 2009. – 102 p.

16. Попович М.Г. Теорія автоматичного керування / М.Г. Попович, О.В. Ковальчук. – К.: Либідь, 2007. – 656 с.

17. Пат. 43549 Україна. МПК G 05 D 23/00. Спосіб програмного формування лінійного закону зміни температури нагрівника / О.Г. Дрючко, Д.О. Стороженко, Н.В. Бунякіна, І.О. Іваницька – u 2009 01783; Заявлено 02.03.2009; Опубл. 25.08.2009, Бюл. №16. – 10 с.

Published

2025-09-30