A METHOD OF HIERARCHICAL CLUSTERING OF NODES IN DISTRIBUTED TELECOMMUNICATION SYSTEMS USING GRAPH ALGORITHMS

Authors

  • Illia Syvolovskyi
  • Volodymyr Lysechko

DOI:

https://doi.org/10.26906/SUNZ.2025.2.255

Keywords:

distributed telecommunication systems, hierarchy, cluster, node, modeling, intelligent systems, graphs, algorithms, optimzization, Louvain, Leiden, throughput, topology, delay minimization, dynamic self-organization

Abstract

This article describes a modified method for hierarchical clustering of computing nodes in distributed telecommunication systems, considering node performance, network topology, delays, and communication channel bandwidth. The proposed method is based on a modified Louvain algorithm that performs multi-step graph clustering with dynamic parameter adjustment. This makes it possible to control the size of clusters and their internal density in accordance with the specified targets, minimizing the fragmentation of the network structure. Based on a comparative analysis of modern clustering methods and experimental modeling, it has been found that the proposed method reduces cluster fragmentation by 36% compared to the Leiden method. In addition, it reduces inter-cluster delays by 4,5% compared to the Louvain method and by 11,8% compared to Leiden, which indicates a more efficient organization of inter-cluster interaction. The improved method ensures an even distribution of computing nodes among clusters, which helps to optimize the overall performance of a distributed telecommunications system.

Downloads

Download data is not yet available.

References

1. Abdelmoneem Randa M., Benslimane Abderrahim, Shaaban Eman (2020) Mobility-aware task scheduling in cloud-Fog IoTbased healthcare architectures. Computer Networks. Volume 179, 9 October 2020, P.P 107348 - 107367 https://doi.org/10.1016/j.comnet.2020.107348

2. Blondel, V.D. et al. (2008) Fast unfolding of communities in large networks. J. Stat. Mech 10008, 1-12(2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

3. Bonomi F. , Milito R., Natarajan P., and Zhu J. (2014). Fog Computing: A Platform for Internet of Things and Analytics. Springer International Publishing, Cham, 169-186. DOI:10.1007/978-3-319-05029-4_7

4. Dugué N., Perez A. (2015) Directed Louvain: maximizing modularity in directed networks. [Research Report] Université d’Orléans. 2015. DOI:10.13140/RG.2.1.4497.0328

5. Ferreira Aluizio, Neto Rocha (2021) Edge-distributed Stream Processing for Video Analytics in Smart City Applications//Federal University of Rio Grande do Norte Exact and Earth Sciences Center Department of Informatics and Applied Mathematics Graduate Program in Systems and Computing PhD in Computer Science. Natal-RN March 2021, P. 119 https://repositorio.ufrn.br/handle/123456789/32743.

6. Fortunato, S. (2010) Community detection in graphs. Physics Reports, Volume 486, Issues 3–5, February 2010, Pages 75-174, https://doi.org/10.1016/j.physrep.2009.11.002

7. Guerrero, C., Lera, I., & Juiz, C. (2019). A Lightweight Decentralized Service Placement Policy for Performance Optimization in Fog Computing. Journal of ambient intelligence and humanized computing. 10 – 6, pp. 2447 – 2464. SPRINGER HEIDELBERG, 01.06.2019 https://doi.org/10.48550/arXiv.2401.12699

8. Lera I., Guerrero C., Juiz C. (2019) Availability-aware Service Placement Policy in Fog Computing Based on Graph Partitions. IEEE Internet of Things Journal. 6 - 2, pp. 3641-3651. IEEE-Inst Electrical Electronics Engineers Inc, 01.04.2019 https://doi.org/10.48550/arXiv.2401.12690

9. Petrovska, I., & Kuchuk, H. (2022). Static allocation method in a cloud environment with a service model IaaS. Advanced Information Systems, 6(3), 99–106. https://doi.org/10.20998/2522-9052.2022.3.13

10. Rzepka Michał, Boryło Piotr, Marcos D. Assunção, Artur Lasoń, Laurent Lefèvre (2022) SDN-based Fog and Cloud Interplay for Stream Processing Future Generation Computer Systems/ Volume 131, June 2022, P.P. 1-17 https://doi.org/10.1016/j.future.2022.01.006

11. Salaht, S., Desprez, F., & Lebre, A. (2020). An Overview of Service Placement Problem in Fog and Edge Computing. ACM Computing Surveys, 53(3), 1-35. DOI: 10.1145/3391196

12. Singh J., Singh P., Sukhpal S. (2021) Fog computing: A taxonomy, systematic review, current trends and research challenges Journal of Parallel and Distributed Computing Volume 157, November 2021, P.P. 56-85 https://doi.org/10.1016/j.jpdc.2021.06.005

13. Syvolovskyi, I. M., Lysechko, V. P., Komar, O. M., Zhuchenko, O. S., Pastushenko, V. V.Analysis of methods for organizing distributed telecommunication systems using the paradigm of Edge Computing. 2024. National University «Yuri Kondratyuk Poltava Polytechnic». Control, Navigation and Communication Systems, 1(75), P. 206-211 DOI:10.26906/SUNZ.2024.1.206.

14. Traag, V.A., Waltman, L. & van Eck, N.J. (2019) From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep 9, 5233 (2019). DOI:10.1038/s41598-019-41695-z

15. Кучук Г.А., Коваленко А.А., Лукова-Чуйко Н.В. Метод мінімізації середньої затримки пакетів у віртуальних з’єднаннях мережі підтримки хмарного сервісу. Системи управління, навігації та зв’язку. 2017. Вип. 2(42). С. 117-120.

16. Alenizi F., Rana O. (2020) Minimising Delay and Energy in Online Dynamic Fog Systems//Computer Science. Networking and Internet Architecture, https://doi.org/10.48550/arXiv.2012.12745

17. Elmokashfi A., Kvalbein A., Dovrolis C. (2010) On the Scalability of BGP: The Role of Topology Growth. IEEE Journal on Selected Areas in Communications, Vol. 28, No 8, pp. 1250-1261, October 2010. DOI:10.1109/JSAC.2010.101003.

18. Fruchterman T.M.J., Reingold Е. M. (1991) Graph drawing by force-directed placement// Software: Practice and Experience, Volume 21, Issue 11, November 1991, P.Р. 1129-1164 https://doi.org/10.1002/spe.4380211102

19. Reichardt J., Bornholdt S. (2004) Detecting Fuzzy Community Structures in Complex Networks with a Potts Model // APS. Physical Review Letters, 93, 218701 – Published 15 November, 2004, https://doi.org/10.1103/PhysRevLett.93.218701

Downloads

Published

2025-06-19

Issue

Section

Communication, telecommunications and radio engineering