STUDY OF THE EFFICIENCY OF RESONANT ELECTROMAGNETIC SCREENS

Authors

  • Yana Biruk
  • Sergii Shamanskyi
  • Andrii Klymchuk

DOI:

https://doi.org/10.26906/SUNZ.2025.2.218

Keywords:

electromagnetic field, electromagnetic shield, resonance, composite material

Abstract

The possibilities of developing a single-layer protective coating with low coefficients of electromagnetic waves of ultra-high, ultra-high and extremely high frequencies are investigated. It is determined that the required reflection coefficients are achieved by matching the electrical and physical thicknesses of the protective material. The desired parameters are regulated by selecting a material with a certain dielectric constant. The use of magnetite (ε = 24) as a filler in the dielectric matrix (ε = 14) allows the use of the ratio to calculate the dielectric efficiency. The presence of magnetic properties in magnetite ( = 4.5) makes it possible to simultaneously shield electromagnetic fields of industrial frequency with shielding coefficients of 6–8. It has been established that for the electrical thickness of the material equal to one (first order of quarter-wave protection) at a frequency of 1 GHz, an acceptable reflection coefficient (-10 dB) is achieved in the frequency band from 0.9 to 1.1 GHz, at a frequency of 3 GHz – from 2.3 to 3.3 GHz, at a frequency of 6 GHz – from 5.3 to 6.6 GHz, at a frequency of 10 GHz – from 9 to 11 GHz. This makes it possible to take into account a certain range of operating frequencies of equipment of certain standards in practice. It should be borne in mind that when determining the effective permittivity of a composite material using known ratios, a large error is observed. Therefore, the maximum values should be used in the calculations, which will allow obtaining a certain margin of efficiency in determining the electrical thickness of the material.

Downloads

Download data is not yet available.

References

1. ДСН 239-96. Державні санітарні норми і правила захисту населення від впливу електромагнітних випромінювань [Чинний від 2017-12-22]: затв. наказом МОЗ України від 01.08.1996 р. № 239. Київ, 2017. 28 с.

2. ДСНіП 3.3.6.096-2002. Державні санітарні норми і правила при роботі з джерелами електромагнітних полів [Чинний від 2003-03-13]: затв. наказом М-ва охорони здоров’я України від 18.12.2002 р. № 476. Київ, 2003. 16 с.

3. 41. ETSI EN 300 220-2 V2.4.1 (2012-01). Electromagnetic compatibility and Radio spectrum Matters (ERM); Short Range Devices (SRD); Radio equipment to be used in the 25 MHz to 1 000 MHz frequency range with power levels ranging up to 500 mW; Part 2: Harmonized EN covering essential requirements under article 3.2 of the R&TTE. Directive. European Telecommunications Standards Institute. 2012. 20 р.

4. 42. ETSI EN 301 489-1 V2.2.1 (2019-03). ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard for ElectroMagnetic Compatibility. Directive. European Telecommunications Standards Institute, 2019. 36 р.

5. Kefeng JI; Jun GAO; Xiangyu CAO; Jiangfeng HAN; Huanhuan YANG. Design of Ultra-wideband Low RCS Reflecting Screen Based on Phase Gradient Metasurface. Radioengineering. Jun 2021, Vol. 30 Issue 2, p. 314-322. https://doi.org/10.13164/re.2021.0314

6. Кизимчук О.П., Арабулі С.І., Власенко В.І. Текстиль для захисту від електромагнітного випромінювання. Вісник Київського національного університету технологій та дизайну. Серія Технічні науки. 2019. № 3 (134). С. 48-61

7. Арабулі С.І., Кизимчук О.П., Власенко В.І., Тунак М., Тунакова В. Дослідження ефективності екранування ЕМВ текстильними матеріалами. III International Scientific-Practical Conference 31.10.2019 Kyiv, Ukraine. Kyiv, 2019. С. 202−206.

8. Butenko O., Boychuk V., Savchenko B., Kotsyubynsky V., Khomenko V., Barsukov V. Pure ultrafine magnetite from carbon steel wastes. Materials Today: Proceedings. 2019. V. 6, pp. 270–278

9. Senyk I., Kuryptia Y., Barsukov V., Butenko O., Khomenko V. Development and application of thin wide-band screening composite materials. Physics and Chemistry of Solid State. 2020. 21(4). Pp. 771–778.

10. 175. Glyva V., Levchenko L., Panova O., Tykhenko O., Radomska M. The composite facing material for electromagnetic felds shielding. Innovative Technology in Architecture and Design (ITAD 2020): IOP Conference Series: Materials Science and Engineering. 2020. Vol. 907 URL: https://iopscience.iop.org/article/ 10.1088/1757-899X/907/1/012043/meta

11. Burdeina, N., Levchenko, L., Korduba, I., Shamanskyi, S., Biruk, Y., Dovhanovskyi, M., Zozulya, S., Klymchuk, A., Nikolaiev, K., & Osadchyi, D. (2024). Applying heterogeneous building materials for the protection of people against electromagnetic radiation. Eastern-European Journal of Enterprise Technologies, 5(10 (131), 45–52. https://doi.org/10.15587/1729-4061.2024.313629

Published

2025-06-19