INVESTIGATION OF ARCHITECTURAL SOLUTIONS FOR BUILDING A SECURE SYSTEM FOR CONFIDENTIAL DATA STORAGE AND TRANSMISSION

Authors

  • Oleksandr Shmatko
  • Oleksandr Rahulin
  • Pavlo Kravchenko
  • Pavlo Buslov

DOI:

https://doi.org/10.26906/SUNZ.2025.2.210

Keywords:

information security, confidentiality, data transmission, data storage, software architecture, encryption

Abstract

Relevance. In the current landscape of rapid digitalization and increasing cyber threats, protecting confidential information during storage and transmission has become a critical priority in the design of information systems. A robust system architecture ensures resistance to attacks, data integrity, and access control. Object of the study: architectural solutions for developing secure software systems for storing and transmitting confidential data. Purpose of the article: to investigate, design, and develop architectural components of a secure information system capable of maintaining data confidentiality during transmission and storage. Research results. The article presents an analysis of current approaches to building secure information systems and justifies the selected architectural model and tools. A system prototype was developed. The system was tested for compliance with security and performance requirements. Conclusions. The proposed architectural solution demonstrated effectiveness in ensuring data integrity, confidentiality, and availability. The results can be applied to further improve information systems in fields dealing with sensitive or mission-critical information.

Downloads

Download data is not yet available.

References

1. Борщ, В. В. (2019). Система охорони здоров’я як структурний елемент національної безпеки України. Науковий вісник Ужгородського національного університету. Серія: Міжнародні економічні відносини та світове господарство, (23, Ч. 1), 19–23.

2. Борщ, В. І. (2018). Інтелектуалізація системи управління охороною здоров’я. Актуальні проблеми клінічної та профілактичної медицини, (2,№ 2-3), 11-20.

3. Гуменюк, Н. Є. (2024). Інтелектуалізація системи управління закладом охорони здоров’я (Doctoral dissertation, Тернопіль, ЗУНУ).

4. Косенко, В. В., & Невлюдов, І. Ш. (2019). Моделі структурного синтезу для управління параметрами інфокомунікаційних мереж систем критичної інфраструктури: монографія. Харків: ХНУРЕ.

5. Ляшук, А. (2023). Загрози і виклики для системи кібербезпеки інформаційних систем та реєстрів сфери охорони здоров’я. Публічне управління: концепції, парадигма, розвиток, удосконалення, (6), 113-121.

6. Сорока, І. М. (2023). Удосконалення медичних інформаційних систем як компонент розвитку системи охорони здоров’я. Вісник соціальної гігієни та організації охорони здоров'я України,(3), 62-69.

7. Mukherjee, P., Roy, S., Ghosh, D., & Nandi, S. K. (2022). Role of animal models in biomedical research: a review. Laboratory Animal Research, 38(1), 18. DOI: ) https://doi.org/10.1186/s42826-022-00128-1

8. Junaid, S. B., Imam, A. A., Balogun, A. O., De Silva, L. C., Surakat, Y. A., Kumar, G., ... & Mahamad, S. (2022, October). Recent advancements in emerging technologies for healthcare management systems: a survey. In Healthcare (Vol. 10, No. 10, p. 1940). DOI: https://doi.org/10.3390/healthcare101019409. Althunibat, A., Binsawad, M., Almaiah, M. A., Almomani, O., Alsaaidah, A., Al-Rahmi, W., & Seliaman, M. E. (2021). Sustainable applications of smart-government services: A model to understand smart-government adoption. Sustainability, 13(6), 3028. DOI: https://doi.org/10.3390/su13063028

9. Althunibat, A., Binsawad, M., Almaiah, M. A., Almomani, O., Alsaaidah, A., Al-Rahmi, W., & Seliaman, M. E. (2021). Sustainable applications of smart-government services: A model to understand smart-government adoption. Sustainability, 13(6), 3028. DOI: https://doi.org/10.3390/su13063028

10. Chen, Q., Yang, Z., Liu, H., Man, J., Oladejo, A. O., Ibrahim, S., ... & Hao, B. (2024). Novel Drug Delivery Systems: An Important Direction for Drug Innovation Research and Development. Pharmaceutics, 16(5), 674. DOI:https://doi.org/10.3390/pharmaceutics16050674

11. Zeydan, E., Arslan, S. S., & Liyanage, M. (2024). Managing Distributed Machine Learning Lifecycle for Healthcare Data in the Cloud. IEEE Access. DOI: 10.1109/ACCESS.2024.3443520

12. Can, O., Thabit, F., Aljahdali, A. O., Al-Homdy, S., & Alkhzaimi, H. A. (2023). A comprehensive literature of genetics cryptographic algorithms for data security in cloud computing. Cybernetics and Systems, 1-35. DOI:https://doi.org/10.1080/01969722.2023.2175117

13. Taherdoost, H., Le, T. V., & Slimani, K. (2025). Cryptographic Techniques in Artificial Intelligence Security: A Bibliometric Review. Cryptography, 9(1), 17. DOI: https://doi.org/10.3390/cryptography9010017

14. Kshetri, N., Rahman, M. M., Rana, M. M., Osama, O. F., & Hutson, J. (2024). algoTRIC: Symmetric and asymmetric encryption algorithms for Cryptography--A comparative analysis in AI era. arXiv preprint arXiv:2412.15237. DOI:https://doi.org/10.48550/arXiv.2412.15237

15. Lalem, F., Laouid, A., Kara, M., Al-Khalidi, M., & Eleyan, A. (2023). A novel digital signature scheme for advanced asymmetric encryption techniques. Applied Sciences, 13(8), 5172. DOI: https://doi.org/10.3390/app13085172

16. Mihaljević, M. J., Knežević, M., Urošević, D., Wang, L., & Xu, S. (2023). An approach for blockchain and symmetric keys broadcast encryption based access control in IoT. Symmetry, 15(2), 299. DOI: https://doi.org/10.3390/sym15020299

17. Rehman, S., Talat Bajwa, N., Shah, M. A., Aseeri, A. O., & Anjum, A. (2021). Hybrid AES-ECC model for the security of data over cloud storage. Electronics, 10(21), 2673. DOI: https://doi.org/10.3390/electronics10212673

18. Gallo, G. D., & Micucci, D. (2025). Internet of Medical Things Systems Review: Insights into Non-Functional Factors. Sensors, 25(9), 2795. DOI: https://doi.org/10.3390/s25092795

19. Haritha, T., & Anitha, A. (2023). Multi-level security in healthcare by integrating lattice-based access control and blockchain-based smart contracts system. IEEE Access, 11, 114322-114340. DOI: 10.1109/ACCESS.2023.3324740

20. Rathod, T., Jadav, N. K., Alshehri, M. D., Tanwar, S., Sharma, R., Felseghi, R. A., & Raboaca, M. S. (2022). Blockchain for future wireless networks: A decade survey. Sensors, 22(11), 4182. DOI: https://doi.org/10.3390/s22114182

21. Yilmaz, S., & Dener, M. (2024). Security with Wireless Sensor Networks in Smart Grids: A Review. Symmetry, 16(10), 1295. DOI: https://doi.org/10.3390/sym16101295

22. Donca, I. C., Stan, O. P., Misaros, M., Stan, A., & Miclea, L. (2024). Comprehensive security for iot devices with kubernetes and raspberry pi cluster. Electronics, 13(9), 1613. DOI: https://doi.org/10.3390/electronics13091613

23. Nascimento, B., Santos, R., Henriques, J., Bernardo, M. V., & Caldeira, F. (2024). Availability, scalability, and security in the migration from container-based to cloud-native applications. Computers, 13(8), 192. DOI:https://doi.org/10.3390/computers13080192

24. Kashyap, N., Jeffery, S., & Agresta, T. (2024). From MedWreck to MedRec: A Call to Action to Improve Medication Reconciliation. Applied Clinical Informatics, 15(02), 230-233.

25. Reegu, F. A., Abas, H., Gulzar, Y., Xin, Q., Alwan, A. A., Jabbari, A., ... & Dziyauddin, R. A. (2023). Blockchain-based framework for interoperable electronic health records for an improved healthcare system. Sustainability, 15(8), 6337. DOI:https://doi.org/10.3390/su15086337

26. Han, Y., Zhang, Y., & Vermund, S. H. (2022). Blockchain technology for electronic health records. International journal of environmental research and public health, 19(23), 15577. DOI: https://doi.org/10.3390/ijerph192315577

27. Lopez, L. J. R., Millan Mayorga, D., Martinez Poveda, L. H., Amaya, A. F. C., & Rojas Reales, W. (2024). Hybrid architectures used in the protection of large healthcare records based on cloud and blockchain integration: A review. Computers, 13(6), 152. DOI: https://doi.org/10.3390/computers13060152

Published

2025-06-19